Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T03:39:05.509Z Has data issue: false hasContentIssue false

History of faulting on the Doruneh Fault System: implications for the kinematic changes of the Central Iranian Microplate

Published online by Cambridge University Press:  25 January 2013

HAMID REZA JAVADI*
Affiliation:
Research Institute for Earth Sciences, Geological Survey of Iran, Meraj Ave, Azadi Sq., P.O. Box 13185-1494, Tehran, Iran Geological Survey of Iran, Meraj Ave., Azadi Sq., Tehran, Iran
MOHAMMAD REZA GHASSEMI
Affiliation:
Research Institute for Earth Sciences, Geological Survey of Iran, Meraj Ave, Azadi Sq., P.O. Box 13185-1494, Tehran, Iran Geological Survey of Iran, Meraj Ave., Azadi Sq., Tehran, Iran
MAJID SHAHPASANDZADEH
Affiliation:
Kerman Graduate University of Technology, Haftbagh Highway, Kerman, Iran
BERNARD GUEST
Affiliation:
University of Calgary, 2500 University Dr., NW Calgary, Alberta, CanadaT2N 1N4
MARZIEH ESTERABI ASHTIANI
Affiliation:
Geological Survey of Iran, Meraj Ave., Azadi Sq., Tehran, Iran Department of Geology, Tarbiat Modares University, P. O. Box 14115-111, Tehran, Iran
ALI YASSAGHI
Affiliation:
Department of Geology, Tarbiat Modares University, P. O. Box 14115-111, Tehran, Iran
MEYSSAM KOUHPEYMA
Affiliation:
Geological Survey of Iran, Meraj Ave., Azadi Sq., Tehran, Iran
*
Author for correspondence: [email protected]

Abstract

The Doruneh Fault System is one of the major transcurrent faults in central Asia, extending ~900 km from western Afghanistan into West-Central Iran. The left-lateral Doruneh Fault System is also a key structure in the Arabia–Eurasia collisional zone, bounding the northern margin of the independent Central Iranian Microplate. The Doruneh Fault System exhibits a curved geometry, and is divided here into three segments: Eastern, Central and Western. We present the results of geological, structural and geomorphic studies into the nature of recent activity along the Doruneh Fault System segments. A surprising observation is that small, relatively young drainage systems often show recent systematic left-lateral displacement across the fault, whereas large rivers indicate a former more complex right-lateral history. Furthermore, the existence of right-lateral offsets of pre-Pliocene rocks and S-C fabrics confirm this earlier phase of right-lateral movement on the fault. We suggest that the early right-lateral kinematics resulted from an earlier NW–SE-directed regional shortening, associated with the anticlockwise rotation of the Central Iranian Microplate. The shortening is characterized by the NE–SW-striking en échelon folds within the fault slivers, the right-lateral Taknar imbricate fan and the superimposed folding exposed north of Kashmar. Thus, assuming an initiation age of Eocene (55.8 Ma) for the fault, we estimate a former right-lateral slip rate of about 5.2–5.5 mm yr−1, which accompanied the 35° anticlockwise rotation of the Central Iranian Microplate. According to our study, the youngest units exhibiting right-lateral displacement are Middle Miocene in age, suggesting a post-Middle Miocene timing for the onset of slip-sense inversion.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aghanabati, A. 2004. Geology of Iran. Tehran: Geological Survey of Iran, 586 pp. (in Persian).Google Scholar
Allen, M. B., Alsop, G. I. & Zhemchuzhnikov, V. G. 2001. Dome and basin refolding and transpressive inversion along the Karatau Fault System, southern Kazakstan. Journal of the Geological Society, London 158, 8395.CrossRefGoogle Scholar
Allen, M., Blanc, E. J.-P., Walker, R., Jackson, J., Talebian, M. & Ghassemi, M. R. 2006. Contrasting styles of convergence in the Arabia-Eurasia collision: why escape tectonics does not occur in Iran. Geological Society of America Special Paper 409, 579–89.Google Scholar
Allen, M., Jackson, J. & Walker, R. 2004. Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long term deformation rates. Tectonics 23, TC2008, doi: 10.1029/2003TC001530.Google Scholar
Allen, M. B., Jones, S., Ismail-Zadeh, A., Simmons, M. D. & Anderson, L. 2002. Onset of subduction as the cause of rapid Pliocene-Quaternary subsidence in the South Caspian basin. Geology 30, 775–8.Google Scholar
Allen, M. B., Kheirkhah, M., Emami, M. H. & Jones, S. J. 2011. Right-lateral shear across Iran and kinematic change in the Arabia–Eurasia collision zone. Geophysical Journal International 184, 555–74.CrossRefGoogle Scholar
Angelier, J. 1990. Inversion of field data in fault tectonics to obtain the original stress, a new rapid direct inversion method by analytical means. Geophysical Journal International 1003, 363–73.Google Scholar
Axen, G. J., Lam, P. S., Grove, M., Stockli, D. F. & Hassanzadeh, J. 2001. Exhumation of the west-central Alborz Mountains, Iran, Caspian subsidence, and collision-related tectonics. Geology 29, 559–62.Google Scholar
Bagheri, S. 2007. The exotic Paleo-Tethys terrane in central Iran: new geological data from Anarak, Jandaq and Posht-e-Badam areas. Ph.D. thesis, University of Lausanne, Lausanne, Switzerland, 223 pp. Published thesis.Google Scholar
Bagheri, S. & Stampfli, G. M. 2008. The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: new geological data, relationships and tectonic implications. Tectonophysics 451, 123–55.Google Scholar
Ballato, P., Uba, C. E., Landgraf, A., Strecker, M. R., Sudo, M., Stockli, D. F., Friedrich, A. & Tabatabaei, S. H. 2011. Arabia-Eurasia continental collision: insights from Late Tertiary foreland-basin evolution in the Alborz Mountains, Northern Iran. Geological Society of America Bulletin 123, 106–31.Google Scholar
Berberian, M. & King, G. C. P. 1981. Towards a palaeogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18, 210–65.Google Scholar
Berberian, M. & Yeats, R. S. 1999. Patterns of historical rupture in the Iranian Plateau. Bulletin of the Seismological Society of America 89, 120–39.Google Scholar
Berberian, M. & Yeats, R. S. 2001. Contribution of archaeological data to studies of earthquake history in the Iranian Plateau. Journal of Structural Geology 23, 536–84.CrossRefGoogle Scholar
Besse, J. & Courtillot, V. 2002. Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. Journal of Geophysical Research 107, 2300, doi: 10.1029/2000JB000050, 31 pp.Google Scholar
Beydoun, Z. R., Hughes Clarke, M. W. & Stoneley, R. 1992. Petroleum in the Zagros basin: a late Tertiary foreland basin overprinted onto the outer edge of a vast hydrocarbon-rich Paleozoic–Mesozoic passive-margin shelf. American Association of Petroleum Geologists Memoir 55, 309–39.Google Scholar
Bina, M., Bucur, I., Prevot, M., Meyerfeld, Y., Daly, L., Cantagrel, J. M. & Mergoil, J. 1986. Palaeomagnetism, petrology and geochronology of Tertiary magmatic and sedimentary units from Iran. Tectonophysics 121, 303–29.Google Scholar
Davoudzadeh, M., Soffel, H. & Schmidt, K. 1981. On the rotation of the Central East Iran microplate. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 3, 180–92.Google Scholar
Devlin, W. J., Cogswell, J. M., Gaskins, G. M., Isaksen, G. H., Pitcher, D. M., Puls, D. P., Stanley, K. O. & Wall, G. R. T. 1999. South Caspian basin: young, cool, and full of promise. GSA Today 9, 19.Google Scholar
Dewey, J. F., Pitman, W., Ryan, W. & Bonin, J. 1973. Plate tectonics and the evolution of the Alpine system. Geological Society of America Bulletin 84, 3137–80.2.0.CO;2>CrossRefGoogle Scholar
Falcon, N. L. 1974. Southern Iran: Zagros Mountains. In Mesozoic Orogenic–Cenozoic Belts: Data for Orogenic Studies (ed. Spencer, A. M.), pp. 199211. Geological Society of London, Special Publication no. 4.Google Scholar
Fattahi, M., Walker, R. T., Khatib, M. M., Dolati, A. & Bahroudi, A. 2007. Slip-rate estimate and past earthquakes on the Doruneh fault, eastern Iran. Geophysical Journal International 168, 691709.Google Scholar
Farbod, Y., Bellier, O., Shabanian, E. & Abbassi, M. R. 2011. Geomorphic and structural variations along the Doruneh Fault System (central Iran). Tectonics 30, TC6014, doi: 10.1029/2011TC002889.CrossRefGoogle Scholar
Ghaemi, F. & Moussavi-Harami, R. 2007. Geological Map of Doruneh, 1:100000 Scale. No. 7460. Tehran: Geological Survey of Iran.Google Scholar
Guest, B., Axen, G. J., Lam, P. S. & Hassanzadeh, J. 2006. Late Cenozoic shortening in the west-central Alborz Mountain, northern Iran, by combined conjugate strike-slip and thin-skinned deformation. Geosphere 2, 3552.Google Scholar
Guest, B, Guest, A. & Axen, G. J. 2007. Continental and oceanic lithosphere in mutual compression: lithospheric buckeling as a mechanism for uplift and subsidence in northern Iran and the south Caspian. Global and Planetary Change 58, 435–53.Google Scholar
Hempton, M. 1987. Constraints on Arabian plate motion and extension history of the Red Sea. Tectonics 6, 687705.CrossRefGoogle Scholar
Hessami, K. 2002. Tectonic history and present-day deformation in the Zagros fold-thrust belt. Ph.D. thesis, University of Uppsala, Uppsala, Sweden. Published thesis.Google Scholar
Holdsworth, R. E., Butler, C. A. & Roberts, A. M. 1997. The recognition of reactivation during continental deformation. Journal of the Geological Society, London 154, 73–8.Google Scholar
Hollingsworth, J., Fattahi, M., Walker, R., Talebian, M., Bahroudi, A., Bolourchi, M. J., Jackson, J. & Copley, A. 2010. Oroclinal bending, distributed thrust and strike-slip faulting, and the accommodation of Arabia–Eurasia convergence in NE Iran since the Oligocene. Geophysical Journal International 181, 1214–46.Google Scholar
Jackson, J., Haines, J. & Holt, W. 1995. The accommodation of Arabia-Eurasia plate convergence in Iran. Journal of Geophysical Research 100, 15205–19.Google Scholar
Jackson, J. & McKenzie, D. 1984. Active tectonics of the Alpine-Himalayan Belt between western Turkey and Pakistan. Geophysical Journal of the Royal Astronomical Society 77, 185264.Google Scholar
Jackson, J. & McKenzie, D. 1988. The relationship between plate motions and seismic moment ten-sors, and the rates of active deformation in the Mediterranean and Middle East. Geophysical Journal International 93, 4573.Google Scholar
Jackson, J., Priestly, K., Allen, M. B. & Berberian, M. 2001. Active tectonics of the South Caspian basin. Geophysical Journal International 148, 214–45.Google Scholar
Javadi, H. R., Foroutan, M., Estrabi Ashtiani, M., Angel Urbina, J., Saidi, A. & Faridi, M. 2011. Tectonics changes in NW South American Plate and their effect on the movement pattern of the Boconó Fault System during the Mérida Andes evolution. Journal of South American Earth Sciences 32, 1429.Google Scholar
Joffe, S. & Garfunkel, Z. 1987. Plate kinematics of the circum Red Sea – a reevaluation. Tectonophysics 141, 522.CrossRefGoogle Scholar
Keller, E. A. & Pinter, N. 2002. Active Tectonics: Earthquakes, Uplift and Landscape. Upper Saddle River, NJ: Prentice Hall, 362 pp.Google Scholar
Lacassin, R., Replumaz, A. & Leloup, P. H. 1998. Hairpin river loops and slip-sense inversion on Southeast Asian strike-slip faults. Geology 26, 703–6.Google Scholar
Lindenberg, H. G. & Jacobshagen, V. 1983. Post Paleozoic geology of the Taknar Zone and adjacent areas (NE Iran, Khorasan). Geodynamic project (Geotraverse) in Iran. Geological Survey of Iran, Report No. 51.Google Scholar
Lyberis, N. & Manby, G. 1999. Oblique to orthogonal convergence across the Turan block in the post-Miocene. American Associated of Petroleum Geologists Bulletin 83, 1135–60.Google Scholar
Maruyama, T. & Lin, A. 2004. Slip sense inversion on active strike-slip faults in southwest Japan and its implications for Cenozoic tectonic evolution. Tectonophysics 383, 4570.Google Scholar
Mattei, M., Cifelli, F., Muttoni, G., Zanchi, A., Berra, F., Mossavvari, F. & Eshraghi, S. A. 2012. Neogene block-rotation in Central Iran: evidence from paleomagnetic data. Geological Society of America Bulletin 124, 943–56.Google Scholar
McKenzie, D. 1972. Active tectonics of the Mediterranean region. Geophysical Journal International 30, 109–85.Google Scholar
McQuarrie, N., Stock, J. M., Verdel, C. & Wernicke, B. P. 2003. Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophysical Research Letters 30, 2036, doi: 10.1029/2003GL017992 CrossRefGoogle Scholar
Meyer, B. & Le Dortz, K. 2007. Strike-slip kinematics in Central and Eastern Iran: estimating fault slip-rates averaged over the Holocene. Tectonics 26, TC5009, doi: 10.1029/2006TC002073.Google Scholar
Muttoni, G., Gaetani, M., Kent, D. V., Sciunnach, D., Angiolini, L., Berra, F., Garzanti, E., Mattei, M. & Zanchi, A. 2009 a. Opening of the Neo-Tethys Ocean and the Pangea B to Pangea A transformation during the Permian. GeoArabia 14, 1748.Google Scholar
Muttoni, G., Mattei, M., Balini, M., Zanchi, A., Gaetani, M. & Berra, F. 2009 b. The drift history of Iran from the Ordovician to the Triassic. In South Caspian to Central Iran Basins (eds Brunet, M.-F., Wilmsen, M. & Granath, J. W.), pp. 729. Geological Society of London, Special Publication no. 312.Google Scholar
Nadirov, R. S., Bagirov, B. E., Tagiyev, M. & Lerche, I. 1997. Flexural plate subsidence, sedimentation rates, and structural development of the super-deep south Caspian Basin. Tectonophysics 14, 383400.Google Scholar
Quennell, A. M. 1984. The Western Arabia rift system. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. & Robertson, A. H. F.), pp. 775–88. Geological Society of London, Special Publication no. 17.Google Scholar
Ramsay, J. G. 1967. Folding and Fracturing of Rocks. New York: MacGraw-Hill, 568 pp.Google Scholar
Regard, V., Hatzfeld, D., Molinaro, M., Aubourg, C., Bayer, R., Bellier, O., Yamini-Fard, F., Peyret, M. & Abbassi, M. 2010. The transition between Makran subduction and the Zagros collision: recent advances on its structure and active deformation. In Tectonic and Stratigraphic Evolution of Zagros and Makran during the Mesozoic–Cenozoic (eds Leturmy, P. & Robin, C.), pp. 4364. Geological Society of London, Special Publication no. 330Google Scholar
Ritz, J.-F., Nzazari, H., Ghassemi, A., Salamati, R., Shafei, A., Solaymani, S. & Vernant, P. 2006. Active transtension inside Central Alborz: a new insight into Northern Iran–Southern Caspian geodynamics. Geology 34, 477–80.Google Scholar
Robertson, A. H. F. 2000. Mesozoic-Tertiary tectonic sedimentary evolution of a south Tethyan oceanic basin and its margins in southern Turkey. In Tectonics and Magmatism in Turkey and the Surrounding Area (eds Bozkurt, E., Winchester, J. A. & Piper, J. D. A.), pp. 97138. Geological Society of London, Special Publication no. 173.Google Scholar
Schmidt, K. & Soffel, H. 1984. Mesozoic geological events in the Central-East Iran and their relation to palaeomagnetic results. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 168, 173–81.Google Scholar
Sella, G. F., Dixon, T. H. & Mao, A. 2002. REVEL: a model for recent plate velocities from space geodesy. Journal of Geophysical Research 107, 2081, doi: 10.1029/2000JBOOO033, 30 pp.Google Scholar
Şengör, A. M. C. 1984. The Cimmeride Orogenic System and the Tectonics of Eurasia. Geological Society of America Special Paper 195, 82 pp.Google Scholar
Shabanian, E., Bellier, O., Abbassi, M., Siame, L. & Farbod, Y. 2010. Plio-Quaternary stress states in NE Iran: Kopeh-Dagh and Allah Dagh-Binalud mountain ranges. Tectonophysics 480, 280304.Google Scholar
Shabanian, E., Bellier, O., Siame, L., Arnaud, N., Abbassi, M. & Cochemé, J. 2009 a. New tectonic configuration in NE Iran: active strike-slip faulting between the Kopeh-Dagh and Binalud mountains. Tectonics 28, TC5002, doi: 10.1029/2008TC002444, 29 pp.CrossRefGoogle Scholar
Shabanian, E., Siame, L., Bellier, O., Benedetti, L. & Abbassi, M. 2009 b. Quaternary slip rates along the northeast boundary of the Arabia-Eurasia collision zone (Kopeh-Dagh Mountains, north-east Iran). Geophysical Journal International 178, 1055–77.Google Scholar
Sieh, K. & Jahns, R. H. 1984. Holocene activity of the San Andreas Fault at Wallace Creek, California. Geological Society of America Bulletin 95, 883–96.Google Scholar
Soffel, H. C., Davoudzadeh, M., Rolf, C. & Schmidt, S. 1996. New palaeomagnetic data from Central Iran and a Triassic palaeoreconstruction. Geologische Rundschau 85, 293302.Google Scholar
Soffel, H. C. & Förster, H. G. 1980. Apparent polar wander path of Central Iran and its geotectonic interpretation. Journal of Geomagnetism and Geoelectricity 32 (Suppl. 3), 117–35.CrossRefGoogle Scholar
Soffel, H. C. & Förster, H. G. 1984. Polar wander path of the Central-East-Iran Microplate including new results. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 168, 165–72.Google Scholar
Stocklin, J. & Nabavi, M. H. 1973. Tectonic Map of Iran, 1:2500000. Tehran: Geological Survey of Iran.Google Scholar
Talebian, M. & Jackson, J. 2002. Offset on the Main Recent Fault of NW Iran and implications for the late Cenozoic tectonics of the Arabia-Eurasia collision zone. Geophysical Journal International 150, 422–39.Google Scholar
Tapponier, P., Mattauer, M., Proust, F. & Cassaigneau, C. 1981. Mesozoic ophiolites, sutures, and large-scale tectonic movements in Afghanistan. Earth and Planetary Science Letters 52, 355–71.Google Scholar
Tavakoli, F. 2007. Present-day deformation and kinematics of the active faults observed by GPS in the Zagros and east of Iran. Ph.D. thesis, University of Joseph Fourier, Grenoble, France. Published thesis.Google Scholar
Tirrul, R., Bell, I. R., Griffis, R. J. & Camp, V. E. 1983. The Sistan suture zone of eastern Iran. Geological Society of America Bulletin 94, 134–50.Google Scholar
Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M. R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F. & Chéry, J. 2004. Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International 157, 381–98.Google Scholar
Walker, R. & Jackson, J. 2002. Offset and evolution of the Gowk fault, S.E. Iran: a major intra- continental strike-slip system. Journal of Structural Geology 24, 1677–98.Google Scholar
Walker, R. & Jackson, J. 2004. Active tectonics and Late Cenozoic strain distribution in central and eastern Iran. Tectonics 23, TC5010, doi: 10.1029/2003TC001529.Google Scholar
Wellman, H. W. 1965. Active wrench faults of Iran, Afghanistan and Pakistan. Geologische Rundschau 18, 217–34.Google Scholar
Wells, A. J. 1969. The Crush Zone of the Iranian Zagros Mountains, and its implications. Geological Magazine 106, 385–94.Google Scholar
Wensink, H. 1970. The implication of some paleomagnetic data from Iran for its structural history. Geologie en Mijnbouw 58, 175–85.Google Scholar
Wensink, H. 1982. Tectonic inferences of paleomagnetic data from some Mesozoic formations in Central Iran. Journal of Geophysics 51, 1223.Google Scholar
Westaway, R. 1994. Present day kinematics of the Middle-East and Eastern Mediterranean. Journal of Geophysical Research 99, 12071–90.Google Scholar
Woodcock, N. H. & Fischer, M. 1986. Strike-slip duplexes. Journal of Structural Geology 8, 725–35.Google Scholar
Yilmaz, Y. 1993. New evidence and model on the evolution of the southeast Anatolian orogen. Geological Society of America Bulletin 105, 251–71.Google Scholar
Zamani, B., Angelier, J. & Zamani, A. 2008. State of stress induced by plate convergence and stress partitioning in northeastern Iran, as indicated by focal mechanisms of earthquakes. Journal of Geodynamics 45, 120–32.Google Scholar
Zanchi, A., Zancheta, S., Garzanti, E., Balini, M., Berra, F., Mattei, M. & Muttoni, G. 2009. The Cimmerian evolution of the Nakhlak-Anarak area, Central Iran, and its bearing for the reconstruction of the history of the Eurasian margin. In South Caspian to Central Iran Basins (eds Brunet, M. F., Wilmsen, M. & Granath, J. W.), pp. 261–86. Geological Society of London, Special Publication no. 312.Google Scholar