Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T15:33:15.976Z Has data issue: false hasContentIssue false

Ground melting and ocellar komatiites: a lead isotopic study at Kambalda, Western Australia

Published online by Cambridge University Press:  01 May 2009

N. J. McNaughton
Affiliation:
Department of Geology, University of Western Australia, Nedlands, 6009, Australia
K. M. Frost
Affiliation:
Department of Geology, University of Western Australia, Nedlands, 6009, Australia
D. I. Groves
Affiliation:
Department of Geology, University of Western Australia, Nedlands, 6009, Australia

Abstract

Stratigraphically and geographically restricted ocellar komatiite flows at Kambalda, Western Australia, appear to represent the products of ground melting of sulphidic sediments by komatiites in lava channels that localized the Fe–Ni–Cu sulphide ores. An immiscible sulphide liquid formed and gravitationally separated from the melted sediment (xenomelt), the resultant buoyant silicate liquid being partly or wholly assimilated by the turbulently convecting komatiite magma. Rarely, the xenomelt gravitationally migrated to the top of flows, and overflowed into the less turbulent lava levees where it collected to form a separate layer overlying a komatiitic layer within a single flow. There was selective preservation of the hybrid felsic layer, as an upper ocellar unit within an ocellar komatiite flow, in lava levees flanking lava channels. The ocellar unit is enriched in elements previously concentrated in the sediments, and shows U–Th–Pb isotopic systematics akin to the underlying sediments. Moreover, the partitioning relationships of U and Pb between the immiscible xenomelt and sulphide liquid enhances the range of U/Pb ratios for components of the ocellar unit, thus allowing sufficient spread of modern uranogenic Pb isotopic ratios to form isochrons, albeit imprecise ones. The range and similarity of model Th/U data from these flows (2.8−3.9) and adjacent sulphidic sediments (2.3−4.4; mostly 2.8−3.9) contrasts with the generally invariable Th/U within Kambalda ultrabasic–basic flows (3.6−3.9), and further supports the ground-melting hypothesis.

Type
Articles
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arden, J. W. & Gale, N. H. 1974. New electrochemical technique for the separation of lead at trace levels from natural silicates. Analytical Chemistry 46, 29.CrossRefGoogle Scholar
Arndt, N. & Jenner, G. 1986. Crustally contaminated komatiites and basalts from Kambalda, Western Australia. Chemical Geology 56, 229–55.Google Scholar
Barley, M. E. 1986. Incompatible-element enrichment in Archean basalts: A consequence of contamination by older sialic crust rather than mantle heterogeneity. Geology 14, 947–50.Google Scholar
Bavinton, O. A. & Taylor, S. R. 1980. Rare earth element geochemistry of Archaean metasedimentary rocks from Kambalda, Western Australia. Geochimica et Cosmochimica Acta 44, 639–48.CrossRefGoogle Scholar
Bickle, M. J., Chapman, H. J., Bettenay, L. F., Groves, D. I. & de Laeter, J. R. 1983. Lead ages, reset rubidium–strontium ages and implications for the Archaean crustal evolution of the Diemals area, Central Yilgarn Block, Western Australia. Geochimica et Cosmochimica Acta 47, 907–14.Google Scholar
Blake, T. S. & McNaughton, N. J. 1984. A geochronological framework for the Pilbara region. Geological Department and Extension Service, University of Western Australia Publication 9, 122.Google Scholar
Browning, P., Groves, D. I., Blockley, J. G. & Rosman, K. J. R. 1987. Lead isotopic constraints on the age and source of gold mineralisation in the Archaean Yilgarn Block, Western Australia. Economic Geology 82, 971–86.Google Scholar
Chauvel, C., Dupre, B. & Jenner, G. A. 1985. The Sm–Nd age of Kambalda volcanics is 500 Ma too old! Earth and Planetary Science Letters 74, 315–24.CrossRefGoogle Scholar
Compston, W., Williams, I. S., Campbell, I. H. & Gresham, J. J. 1986. Zircon xenocrysts from the Kambalda volcanics: age constraints and direct evidence for older continental crust below the Kambalda–Norseman greenstones. Earth and Planetary Science Letters 76, 299311.Google Scholar
Compston, W., Williams, I. S., Pidgeon, R. T. & Gresham, J. J. 1984. The age of the Kambalda sodic granodiorite. Annual Report of the Research School of Earth Sciences, Australian National University, 95–6.Google Scholar
Dupre, B., Allegre, C. J. & Lewin, E. 1984. Th/U geochemistry deduced by 8*/6* lead. EOS 65, 304.Google Scholar
Dupre, B., Chauvel, C. & Arndt, N. T. 1984. Pb and Nd isotopic study of two Archean komatiitic flows from Alexo, Ontario. Geochimica et Cosmochimica Acta 48, 1965–72.CrossRefGoogle Scholar
Frost, K. M. & Groves, D. I. 1988. Ocellar units in the Kambalda–Widgiemooltha komatiite sequences: evidence for sediment assimilation by komatiite lavas. Proceedings of 5th Magmatic Sulphides Field Conference, Harare, Zimbabwe. Institution of Mining & Metallurgy London (in press).Google Scholar
Gresham, J. J. 1986. Depositional environments of volcanic peridotite-nickel sulphide deposits with special reference to the Kambalda dome. In Geology and Metallogeny of Copper Deposits (ed. Friedrich, G., Genkin, A. J., Naldrett, A. J., Ridge, J. D., Sillitoe, R. H., Yokes, F.), pp. 6390. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Gresham, J. J. & Lofrus-Hills, G. D. 1981. The geology of the Kambalda nickel field, Western Australia. Economic Geology 76, 13731416.CrossRefGoogle Scholar
Groves, D. I., Korkiakoski, E. A., McNaughton, N. J., Lesher, C. M. & Cowden, A. 1986. Thermal erosion by komatiites at Kambalda, Western Australia and the genesis of nickel ores. Nature 319, 136–9.Google Scholar
Hess, P. C. & Rutherford, M. J. 1974. Element fractionation between immiscible melts (abstr.). Lunar Science 5, 328–30.Google Scholar
Huppert, H. E. & Sparks, R. S. J. 1985. Cooling and contamination of mafic and ultramafic magmas during ascent through continental crust. Earth and Planetary Science Letters 74, 371–86.Google Scholar
Huppert, H. E., Sparks, R. S. J., Turner, J. S. & Arndt, N. T. 1984. Emplacement and cooling of komatiite lavas. Nature 309, 1922.Google Scholar
Lesher, C. M., Arndt, N. T. & Groves, D. I. 1984. Genesis of komatiite-associated nickel deposits at Kambalda, Western Australia: a distal volcanic model. In Sulphide Deposits in Mafic and Ultramafic Rocks (ed. Buchanan, D. L., Jones, M. J.), pp. 132–40. London: Special Publication of the Institute of Mining and Metallurgy.Google Scholar
Lesher, C. M. & Groves, D. I. 1986. Controls on the formation of komatiite-associated nickel sulphide deposits. In Geology and Metallogeny of Copper Deposits. (ed. Friedrich, G., Genkin, A. D., Naldrett, A. J., Ridge, J. D., Sillitoe, R. H., Vokes, F.), pp. 4362. Berlin: Springer-Verlag.Google Scholar
Lesher, C. M., Lee, R. F., Groves, D. I., Bickle, M. J. & Donaldson, M. J. 1981. Geochemistry of komatiites from Kambalda, Western Australia: I Chalcophile element deposition – a consequence of sulphide liquid separation from komatiite magmas. Economic Geology 76, 1714–28.CrossRefGoogle Scholar
Rock, N. M. S., Webb, J. A., McNaughton, N. J. & Bell, G. D. 1988. Nonparametric estimation of averages and errors for small data-sets in isotope geoscience: a proposal. Isotope Geoscience. (in press).Google Scholar
Roddick, J. C. 1984. Emplacement and metamorphism of Archaean mafic volcanics at Kambalda, Western Australia – geochemical and isotopic constraints. Geochimica et Cosmochimica Acta 48, 1305–18.CrossRefGoogle Scholar
Ryerson, F. J. & Hess, P. C. 1978. Implication of liquidliquid distribution coefficients to mineral liquid partitioning. Geochimica et Cosmochimica Acta 42, 921–32.CrossRefGoogle Scholar
Shimazaki, H. & McLean, W. H. 1976. An experimental study on the partition of zinc and lead between silicate and sulphide liquids. Mineralium Deposita 2, 125132.Google Scholar
Steiger, R. H. & Jaeger, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Tatsumoto, M., Knight, R. J. & Allegre, C. J. 1973. Time differences in the formation of meteorites as determined from the ratio of lead-207 to lead-206. Science 180, 1279–83.Google Scholar
Watson, E. B. 1976. Two-liquid partition coefficients: experimental data and geochemical implications. Contributions to Mineralogy and Petrology 56, 119–34.Google Scholar
York, D. 1969. Least squares fitting of a straight line with correlated errors. Earth and Planetary Science Letters 5, 320–24.Google Scholar