Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T16:11:33.677Z Has data issue: false hasContentIssue false

Glaucophane Schists of Caledonian age from Spitsbergen

Published online by Cambridge University Press:  01 May 2009

W. T. Horsfield
Affiliation:
Department of GeologyUniversity of the West IndiesMona, Kingston 7, Jamaica

Summary

Glaucophane schists from Oscar II Land in western Spitsbergen are described for the first time. Although lawsonite, aragonite and pumpellyite have not been found, the mineral assemblages correspond generally with glaucophane schist assemblages known from elsewhere. The results of three XRF chemical analyses are presented, and five K/Ar radiometric determinations. The radiometric dating and field evidence both suggest that the glaucophane schists are a result not of the Tertiary orogeny which affected this part of Spitsbergen, but of the earlier Caledonian orogeny.

Type
Articles
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blake, M. C., Irwin, W. P. & Coleman, R. G. 1969. Blueschist facies metamorphism related to regional thrust faulting. Tectonophysics 8, 237–46.Google Scholar
Bloxam, R. W. & Allen, J. B. 1958. Glaucophane schist, eclogite and associated rocks from Knockormal in the Girvan–Ballantrae Complex, south Ayrshire. Trans. R. Soc. Edinb. 64, 127.Google Scholar
Coleman, R. G. 1971. Plate tectonic emplacement of Upper Mantle peridotites along continental edges. J. geophys. Res. 76, 5. 1212–22.Google Scholar
Coleman, R. G. & Lee, D. E. 1963. Glaucophane-bearing metamorphic rock types of the Cazadero area. California. J. Petrology 4, 260301.Google Scholar
Ernst, W. G. 1970. Tectonic contact between the Franciscan mélange and the Great Valley sequence: Crustal expression of a late Mesozoic Benioff Zone. J. geophys. Res. 75, 886901.CrossRefGoogle Scholar
Gayer, R. A., Gee, D. G., Harland, W. B., Miller, J. A., Spall, H. R., Wallis, R. H. & Winsnes, T. S. 1966. Radiometric age determinations on rocks from Spitsbergen. Norsk Polarinst. Skrifter 137, 139.Google Scholar
Greenly, E. 1919. The geology of Anglesey. Mem. Geol. Surv. U.K.Google Scholar
Harland, W. B. 1969. Contribution of Spitsbergen to Understanding of North Atlantic Region. Mem. Am. Ass. Petrol. Geol. 12, 817–51.Google Scholar
Hart, S. R. & Dodd, T. T. 1962. Excess radiogenic argon in pyroxenes. J. geophys. Res. 61, 2998–9.Google Scholar
Holgate, N. 1951. On crossite from Anglesey. Mineralog. Mag. 29, 792–8.Google Scholar
Taylor, H. P. & Coleman, R. G. 1968. O18/O16 Ratios of Coexisting Minerals in Glaucophane-bearing metamorphic rocks. Bull. geol. Soc. Am. 79, 1727–56.Google Scholar
Turner, F. J. 1968. Metamorphic Petrology, mineralogical and field aspects, 402 pp. McGraw Hill, New York.Google Scholar