Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T16:05:04.392Z Has data issue: false hasContentIssue false

Geology, petrology and tectonomagmatic evolution of the plutonic crustal rocks of the Sabzevar ophiolite, NE Iran

Published online by Cambridge University Press:  21 March 2013

MORTEZA KHALATBARI JAFARI*
Affiliation:
Research Institute for Earth Sciences, Geological Survey and Mining Exploration of Iran, Tehran, Iran
HASSAN A. BABAIE
Affiliation:
Department of Geosciences, Georgia State University, Atlanta, GA 30302, USA
MOJTABA MIRZAIE
Affiliation:
Research Institute for Earth Sciences, Geological Survey and Mining Exploration of Iran, Tehran, Iran
*
Author for correspondence: [email protected]

Abstract

The plutonic crustal sequence exposed northeast of Sabzevar is part of the ophiolitic belt of Sabzevar that occurs along the northern margin of the Central Iran micro-continent. The sequence includes olivine and pyroxene gabbro with cumulate characteristics, isotropic gabbro, foliated gabbro and a diabase sheeted dyke complex cut by wehrlite and olivine websterite intrusions, and pegmatite gabbro and plagiogranite as small intrusions and dykes. The sequence is comparable to gabbros in known ophiolite complexes. Microscopic studies show an abundance of the mesocumulate and heteradcumulate textures that represent open system magma chambers, which are common in supra-subduction zones. The olivine → plagioclase → clinopyroxene → ± orthopyroxene → amphibole trend of mineralization in the gabbros, similar to mid-ocean ridge basalt (MORB), and olivine → clinopyroxene → ± orthopyroxene → plagioclase → amphibole, similar to arc rocks, indicate the diversity in the formation of these rocks, and represent petrographic evidence of their formation in a supra-subduction zone. The rocks have calc-alkaline to tholeiitic affinities, and niobium depletion in the spider diagrams of diabase that matches the patterns of island arc magma. These patterns, and the light rare earth element enrichment of the diabase and plagiogranite, suggest the effect and introduction of the fluids, originating from the subducting slab, beneath the mantle wedge. The low titanium compositions, matching those of arc diabase and plagiogranite, plot in the island arc to MORB tectonomagmatic fields, and suggest formation of the Sabzevar ophiolitic plutonic crustal sequence in a supra-subduction zone during Late Cretaceous time.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous. 1972. Penrose field conference on ophiolites. Geotimes 17, 24–5.Google Scholar
Aghanabati, A. 2004. Major Sedimentary-Structural Units of Iran. Geological Survey of Iran.Google Scholar
Alabaster, T., Pearce, J. A. & Malpas, J. 1982. The volcanic stratigraphy and petrogenesis of the Oman ophiolite complex. Contributions to Mineralogy and Petrology 81, 168–83.Google Scholar
Ayers, J. 1998. Trace element modeling of aqueous fluid peridotite interaction in the mantle wedge of subduction zone. Contributions to Mineralogy and Petrology 132, 390404.Google Scholar
Baroz, F., Macaudière, J., Montigny, R., Noghreyan, M., Ohnenstetter, M. & Rocci, G. 1984. Ophiolites and related formations in the central part of the Sabzevar Range (Iran), and possible geotectonic reconstruction. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen 168, 358–88.Google Scholar
Beard, J. S. 1986. Characteristic mineralogy of arc-related cumulate gabbros: implications for the tectonic setting of gabbroic plutons and for andesite genesis. Geology 14, 848–51.Google Scholar
Bogoch, R., Avigad, D. & Weissbrod, T. 2002. Geochemistry of the quartz diorite granite association, Roded area, southern Israel. Journal of African Earth Sciences 35, 51–9.Google Scholar
Cameron, W. E., Nesbit, E. G. & Dietrich, V. J. 1980. Petrographic dissimilarities between ophiolite and ocean floor basalts. In Ophiolites: Proceedings of the International Ophiolite Symposium, Cyprus 1979 (ed. Panayiotou, A.), pp. 182–92. Nicosia: Cyprus Geological Survey Department.Google Scholar
Chung, S.-L., Wang, K.-L., Crawford, A. J., Kamenetsty, V. S., Chen, C.-H., Lan, C.-Y. & Chen, C.-H. 2001. High Mg potassic rocks from Taiwan: implications for the genesis of orogenic potassic lavas. Lithos 59, 153–70.Google Scholar
Church, W. R. & Riccio, L. 1977. Fractionation trends in the Bay of Islands ophiolite of Newfoundland: polycyclic cumulate sequences in ophiolites and their classification. Canadian Journal of Earth Science 14, 1156–65.Google Scholar
Crawford, A. J., Falloon, T. J. & Green, D. H. 1989. Classification, petrogenesis, and tectonic setting of boninites. In Boninites and Related Rocks (ed. Crawford, A. J.), pp. 249. Boston, Mass.: Unwin Hyman.Google Scholar
Dilek, Y. 2003. Ophiolite pulses, mantle plumes and orogeny. In Ophiolites in Earth History (eds Dilek, Y. & Robinson, R. T.), pp. 919. Geological Society of London, Special Publication no. 218.Google Scholar
Elliott, T., Plank, T., Zindler, A., White, W. & Bourdon, B. 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research 102, 14991–5019.Google Scholar
Emami, M. H., Sadegi, M. M. & Omrani, S. J. 1993. Magmatic Map of Iran, Scale 1:1,000,000. Geological Survey and Mining Exploration of Iran.Google Scholar
Ernewein, M., Pflumio, C. & Whitechurch, H. 1988. The death of an accretion zone as evidenced by the magmatic history of the Sumail Ophiolite (Oman). In The Ophiolites of Oman (eds Boudier, F. & Nicolas, A.). Tectonophysics 51, 247–74.Google Scholar
Hebert, R. & Laurent, R. 1990. Mineral chemistry of the plutonic section of the Troodos Ophiolite: new constraints for genesis of arc-related ophiolites. In Ophiolites: Oceanic Crustal Analogues, Proceedings of the “Troodos 1987” Symposium (eds Malpas, J., Moores, E. M., Panayiotou, A. & Xenophontos, C.), pp. 149–63. Nicosia, Cyprus: Geological Survey of Cyprus.Google Scholar
Hole, M. J., Saunders, A. D., Marriner, G. F. & Tarney, J. 1984. Subduction of pelagic sediments: implications for the origin of Ce anomalous basalts from the Mariana Islands. Journal of Geological Society, London 141, 453–72.Google Scholar
Hopper, D. J. & Smith, I. M. 1996. Petrology of the gabbro and sheeted basaltic intrusives at North Cape, New Zealand. New Zealand Journal of Geology and Geophysics 39, 389402.CrossRefGoogle Scholar
Hunter, R. H. 1996. Texture development in cumulate rocks. In Layered Intrusions (ed. Cawthorn, R. G.), pp. 77101. Amsterdam: Elsevier.Google Scholar
Irvine, T. N. & Baragar, W. R. A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Science 8, 523–48.Google Scholar
Ishikawa, A., Kaneko, Y., Kadarusman, A. & Ota, T. 2007. Multiple generations of forearc mafic–ultramafic rocks in the Timor–Tanimbar ophiolite, eastern Indonesia. Gondwana Research 11, 200–17.Google Scholar
Juteau, T., Ernewin, M., Reuber, I., Whitechurch, H. & Dahl, R. 1988. Duality of magmatism in the plutonic sequence of the Sumail nappe, Oman. Tectonophysics 151, 107–35.Google Scholar
Juteau, T. & Maury, R. 2009. La Croute Océanique: Pétrologie et Dynamique Endogene. Paris: Société Géologique de France/Vuibert, 470 pp.Google Scholar
Kelemen, P. B., Hanghoj, K. & Greene, A. R. 2004. One view of the geochemistry of subduction related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise on Geochemistry 3, 593659.Google Scholar
Knipper, A. & Ricou, L. E. 1986. Ophiolites as indicators of the geodynamic evolution of the Tethyan Ocean. Tectonophysics 123, 213–40.Google Scholar
Kocak, K., Isıka, F., Arslanb, M. & Zedef, V. 2005. Petrological and source region characteristics of ophiolitic hornblende gabbros from the Aksaray and Kayseri regions, central Anatolian crystalline complex, Turkey. Journal of Asian Earth Sciences 25, 883–91.Google Scholar
Lensch, G. 1980. Major element geochemistry of the ophiolites in north-eastern Iran. In Ophiolites: Proceedings of the International Ophiolite Symposium, Cyprus 1979 (ed. Panayotou, A.), pp. 398401. Nicosia: Cyprus Geological Survey Department.Google Scholar
Lensch, G. & Davoudzadeh, M. 1982. Ophiolites in Iran. Neues Jahrbuch für Geologie und Paläontologie – Monatshefte 5, 306–20.Google Scholar
Lensch, G., Mihm, A. & Alavi-Tehrani, N. 1977. Petrography and geology of the ophiolite belt north of Sabzevar/Khorasan (Iran). Neues Jahrbuch für Mineralogie – Abhandlungen 131, 156–78.Google Scholar
Lensch, G., Mihm, A. & Alavi-Tehrani, N. 1979. Major element geochemistry of the ophiolites north of Sabzevar (Iran). Neues Jahrbuch für Geologie und Paläontologie – Monatshefte 415–47.Google Scholar
Lensch, G., Mihm, A. & Alavi-Tehrani, N. 1980. The postophiolitic volcanism north of Sabzevar/Iran: geology, petrography and major element geochemistry. Neues Jahrbuch für Geologie und Paläontologie – Monatshefte 686–702.Google Scholar
Lin, P. N., Stern, R. J. & Bloomer, S. H. 1989. Shoshonitic volcanism in the northern Mariana arc: 2. Large-ion lithophile and rare element abundances: evidence for the source of incompatible element enrichments in intraoceanic arcs. Journal of Geophysical Research 94, 4497–514.Google Scholar
Lindenberg, H. G., Gorler, K. & Ibbeken, H. 1983. Stratigraphy, structure and orogenic evolution of the Sabzevar zone in the area of Oryan (Khorasan, NE Iran). Geological Survey of Iran, Geodynamic Project (Geotraverse) in Iran, Report no. 51, pp. 119143.Google Scholar
Majidi, J. 1999. Sabzevar Geological Map and Report, 1:100,000. Geological Survey and Mining Exploration of Iran.Google Scholar
Martinez, F. & Taylor, B. 2002. Mantle wedge control on back-arc crustal accretion. Nature 416, 417–20.Google Scholar
McCulloch, M. T. & Gamble, J. A. 1991. Geochemical and geodynamical constraints on subduction magmatism. Earth and Planetary Science Letters 102, 358–74.Google Scholar
Middlemost, E. A. K. 1985. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology. London: Longman, 266 pp.Google Scholar
Miyashiro, A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science 274, 321–55.Google Scholar
Miyashita, S., Adachi, Y., Umino, S. 2003. Along-axis magmatic system in the northern Oman ophiolite: implications of compositional variation of the sheeted dike complex. Geochemistry, Geophysics, Geosystems 4, 8617, doi:10.1029/2001GC000235, 26 pp.Google Scholar
Mullen, E. D. 1983. MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters 62, 5362.CrossRefGoogle Scholar
Nagudi, N. O., Koberl, C. H. & Kurat, G. 2003. Petrography and geochemistry of the Singo granite, Uganda and implications for its origin. Journal of African Earth Sciences 35, 51–9.Google Scholar
Nicholson, K. N., Black, P. M. & Picard, C. 2000. Geochemistry and tectonic significance of the Tangihua ophiolite complex, New Zealand. Tectonophysics 321, 115.Google Scholar
Nicolas, A. 1989. Structures of Ophiolites and Dynamics of Oceanic Lithosphere. Petrology and Structural Geology. Dordrecht, Boston, London: Kluwer Academic Press, 367 pp.Google Scholar
Nicolas, A. & Boudier, F. 2009. Subsidence in magma chamber and the development of magmatic foliation in Oman ophiolite gabbros. Earth and Planetary Science Letters 284, 7687.Google Scholar
Ohnenstetter, M. 1983. The role of possible transverse faults in the development of the Sabzevar ophiolites, northeast Iran, with special reference to magma chamber tectonics. Sciences Géologiques Bulletin 36, 7390.Google Scholar
Parlak, O., Delaloye, M. & Bing, L E. 1996. Mineral chemistry of ultramafic and mafic cumulates as an indicator of the arc-related origin of the Mersin ophiolite (southern Turkey). Geologische Rundschau 85, 647–61.Google Scholar
Parlak, O., Hock, V. & Delaloye, M. 2000. Supra-subduction zone origin of the Pozantl-Karsanti Ophiolite (southern Turkey) deduced from whole-rock and mineral chemistry of the gabbroic cumulates. In Tectonics and Magmatism in Turkey and the Surrounding Area (eds Bozkurt, E., Winchester, J. A. & Piper, J. D. A.), pp. 219–34. Geological Society of London, Special Publication no. 173.Google Scholar
Parlak, O., Hock, V. & Delaloye, M. 2002. The supra-subduction zone Pozanti–Karsanti ophiolite, southern Turkey: evidence for high-pressure crystal fractionation of ultramafic cumulates. Lithos 65, 205–24.Google Scholar
Pearce, J. A. 1996. A user's guide to basalt discrimination diagrams. In Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration (ed. Wyman, D. A.), pp. 79113. Geological Association of Canada, Short Course Notes no. 12.Google Scholar
Pearce, J. A. & Cann, J. R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters 19, 290300.Google Scholar
Pearce, J. A., Lippard, S. J. & Roberts, S. 1984. Characteristics and tectonic significance of suprasubdution zone ophiolite. In Marginal Basin Geology (eds Kokelaar, B. P. & Howells, M. F.), pp. 7794. Geological Society of London, Special Publication no. 16.Google Scholar
Pearce, J. A. & Peate, D. W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences 23, 251–85.Google Scholar
Robinson, P. T. & Malpas, J. 1990. The Troodos ophiolite: new perspective on its origin and emplacement. In Ophiolites: Oceanic Crustal Analogues. Ophiolites: Oceanic Crustal Analogues, Proceedings of the “Troodos 1987” Symposium (eds Malpas, J., Moores, E. M., Panayiotou, A. & Xenophontos, C.), pp. 1326. Nicosia, Cyprus: Geological Survey of Cyprus.Google Scholar
Rossetti, F., Nasrabady, M., Vignaroli, G., Theye, T., Gerdes, A., Razavi, M. H. & Moin Vaziri, H. 2009. Early Cretaceous migmatitic mafic granulites from the Sabzevar range (NE Iran): implications for the closure of the Mesozoic peri-Tethyan oceans in central Iran. Terra Nova 22, 2634.Google Scholar
Sahandi, M. 1992. Geological Map of Sabzevar. Geological Survey and Mining Exploration of Iran.Google Scholar
Saunders, A. D. & Tarney, J. 1984. Geochemical characteristics of basaltic volcanism within backarc basins. In Marginal Basin Geology (Kokelaar, B. P. & Howells, M. F.), pp. 5976. Geological Society of London, Special Publication no. 16.Google Scholar
Serri, G. 1981. The petrochemistry of ophiolitic gabbroic complexes: a key for the classification of gabbroic cumulates into low-Ti and high-Ti type. Earth and Planetary Science Letters 52, 203–12.CrossRefGoogle Scholar
Shelley, D. 1993. Igneous and Metamorphic Rocks Under the Microscope. Classification, Textures, Microstructures, and Mineral Preferred Orientation. London: Chapman and Hall, 445 pp.Google Scholar
Shervais, J. W. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters 59, 101–18.Google Scholar
Spices, G., Lensch, G. & Miham, A. 1983. Geochemistry of the post-ophiolitic Tertiary volcanic between Sabzevar and Quchan (NE Iran). Geological Survey of Iran, Geodynamic Project (Geotraverse) in Iran, Report no. 51, pp. 247–67.Google Scholar
Srivastava, R. K., Chandra, R. & Shastry, A. 2004. High-Ti type N-MORB parentage of basalts from the south Andaman ophiolite suite, India. Proceedings of the Indian Academy of Science (Earth and Planetary Science) 113, 605–18.Google Scholar
Shojaat, B., Hassanipak, A. A., Mobasher, K. & Ghazi, A.M. 2002. Petrology, geochemistry and tectonics of the Sabzevar ophiolite, North Central Iran. Journal of Asian Earth Sciences 21, 1053–67.Google Scholar
Stern, R. J., Kohut, E. J., Bloomer, S. H., Leybourne, M., Fouch, M. & Vervoot, J. 2006. Subduction factory processes beneath the Guguan cross-chin, Mariana Arc: no role for sediments, are serpentinites important? Contributions to Mineralogy and Petrology 151, 202–21.Google Scholar
Stocklin, J. 1968. Structural history and tectonics of Iran: a review. American Association of Petroleum Geologists Bulletin 52, 1229–58.Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of ocean basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–46. Geological Society of London, Special Publication no. 42.Google Scholar
Taylor, B. & Martinez, F. 2003. Back-arc basin basalt systematics. Earth and Planetary Science Letters 210, 481–97.Google Scholar
Tian, L., Castillo, P. R., Hawkins, J. W., Hilton, D. R., Hanan, B. B. & Piatruszka, A. J. 2008. Major and trace element and Sr–Nd isotope signatures of lavas from the Central Lau Basin: implications for the nature and influence of subduction components in the back-arc mantle. Journal of Volcanology and Geothermal Research 178, 657–70.Google Scholar
Wager, L. R. 1963. The mechanism of adcumulus growth in the layered series of the Skaergaard intrusion. Special Publication of the Mineralogical Society of America 1, 119.Google Scholar
Wager, L. R. & Brown, G. M. 1968. Layered Igneous Rocks. Edinburgh: Oliver and Boyd, 588 pp.Google Scholar
Wager, L. R., Brown, G. M. & Wadsworth, W. J. 1960. Types of igneous cumulate. Journal of Petrology 1, 7385.Google Scholar
Winter, J. D. 2001. An Introduction to Igneous and Metamorphic Petrology. Upper Saddle River, New Jersey: Prentice Hall Inc., 697 pp.Google Scholar
Winchester, J. A. & Floyd, P. A. 1976. Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks. Earth and Planetary Scientific Letters 28, 459–69.Google Scholar
Wood, D. A. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Scientific Letters 50, 1130.Google Scholar
Yamasaki, T., Maeda, J. & Mizuta, T. 2006. Geochemical evidence in clinopyroxenes from gabbroic sequence for two distinct magmatisms in the Oman ophiolite. Earth and Planetary Science Letters 251, 5265.Google Scholar
Yumul, G. P. Jr. 1996. Review of the geochemistry of mid ocean ridge and supra-subduction zone ophiolites: comparison and discussion. Journal of the Geological Society of the Philippines 51 (1–2), 336.Google Scholar
Yunpeng, D. & Bingquan, Z. 2000. Characteristics of the island-arc pillow lavas from southeast Yunnan Province, and its tectonic implications for Paleo-Tethys in South China. Chinese Science Bulletin 45 (8), 1827.Google Scholar