Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T17:23:32.858Z Has data issue: false hasContentIssue false

Geology, biostratigraphy and carbon isotope chemostratigraphy of the Palaeogene fossil-bearing Dakhla sections, southwestern Moroccan Sahara

Published online by Cambridge University Press:  26 October 2017

MOULOUD BENAMMI*
Affiliation:
Institut International de Paléoprimatologie, Paléontologie Humaine: Evolution et Paléoenvironnements (iPHEP), UMR-CNRS 7262, Université de Poitiers UFR SFA, 40 avenue du Recteur Pineau, F-86022 Poitiers cedex, France
SYLVAIN ADNET
Affiliation:
Institut des Sciences de l'Evolution de Montpellier (ISE-M), UMR 5554 CNRS/UM/IRD/EPHE, CC064, Université de Montpellier, place Eugène Bataillon, F-34095 Montpellier cedex 05, France
LAURENT MARIVAUX
Affiliation:
Institut des Sciences de l'Evolution de Montpellier (ISE-M), UMR 5554 CNRS/UM/IRD/EPHE, CC064, Université de Montpellier, place Eugène Bataillon, F-34095 Montpellier cedex 05, France
JOHAN YANS
Affiliation:
Department of Geology, University of Namur, rue de Bruxelles 61, 5000 Namur, Belgium
CORENTIN NOIRET
Affiliation:
Department of Geology, University of Namur, rue de Bruxelles 61, 5000 Namur, Belgium
RODOLPHE TABUCE
Affiliation:
Institut des Sciences de l'Evolution de Montpellier (ISE-M), UMR 5554 CNRS/UM/IRD/EPHE, CC064, Université de Montpellier, place Eugène Bataillon, F-34095 Montpellier cedex 05, France
JÉRÔME SURAULT
Affiliation:
Institut International de Paléoprimatologie, Paléontologie Humaine: Evolution et Paléoenvironnements (iPHEP), UMR-CNRS 7262, Université de Poitiers UFR SFA, 40 avenue du Recteur Pineau, F-86022 Poitiers cedex, France
IMAD EL KATI
Affiliation:
Laboratoire de Géologie, Géophysique, Géorisques et Environnement (3GE), Département de Géologie, Université Ibn Tofail, Faculté des Sciences, BP. 133, Kenitra, Morocco
SÉBASTIEN ENAULT
Affiliation:
Institut des Sciences de l'Evolution de Montpellier (ISE-M), UMR 5554 CNRS/UM/IRD/EPHE, CC064, Université de Montpellier, place Eugène Bataillon, F-34095 Montpellier cedex 05, France
LAHSSEN BAIDDER
Affiliation:
Laboratoire Géosciences, Université Hassan II-Casablanca, BP 5366 Maârif, Casablanca, Morocco
OMAR SADDIQI
Affiliation:
Laboratoire Géosciences, Université Hassan II-Casablanca, BP 5366 Maârif, Casablanca, Morocco
MOHAMED BENAMMI
Affiliation:
Laboratoire de Géologie, Géophysique, Géorisques et Environnement (3GE), Département de Géologie, Université Ibn Tofail, Faculté des Sciences, BP. 133, Kenitra, Morocco
*
Author for correspondence: [email protected]

Abstract

New Palaeogene vertebrate localities were recently reported in the southern Dakhla area (southwestern Morocco). The Eocene sediment strata crops out on cliffs along the Atlantic Ocean coast. Vertebrate remains come from five conglomeratic sandstone beds and are principally represented by isolated teeth belonging to micromammals, selachians and bony fishes, a proboscidean assigned to ?Numidotherium sp. and many remains of archaeocete whales (Basilosauridae). From fieldwork five lithostratigraphic sections were described, essentially based on the lithological characteristic of sediments. Despite the lateral variations of facies, correlations between these five sections were possible on the basis of fossil-bearing beds (A1, B1, B2, C1 and C2) and five lithological units were identified. The lower part of the section consists of rhythmically bedded, chert-rich marine siltstones and marls with thin black phosphorite with organic matter at the base. The overlying units include coarse-grained to microconglomeratic sandstones interbedded with silts, indicating deposition in a shallow-marine environment with fluvial influence. The natural remanence magnetization of a total of 50 samples was measured; the intensity of most of the samples is too weak however, before or after the first step of demagnetization. The palaeomagnetic data from the samples are very unstable, except for eight from three similar sandstone levels which show a normal polarity. Matched with biostratigraphic data on rodents, primates, the selachian, sirenian and cetacean faunas, the new carbon isotope chemostratigraphy on organics (1) refines the age of the uppermost C2 fossil-bearing bed to earliest Oligocene time and (2) confirms the Priabonian age of the B1 to C1 levels.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adnet, S., Cappetta, H. & Tabuce, R. 2010. A Middle–Late Eocene vertebrate fauna (marine fish and mammals) from southwestern Morocco; preliminary report: age and palaeobiogeographical implications. Geological Magazine 147, 860–70.Google Scholar
Benammi, M., Elkati, I., Adnet, S., Marivaux, L., Tabuce, R., Surault, J., Baidder, L., Saddiqi, O. & Benammi, M. 2014a. Corrélation de coupes lithostratigraphiques le long des falaises côtières dans la region d'El Argoub (Dakhla, Maroc). In Proceedings of Second North African Vertebrate Palaeontology Congress-NAVEP2, Ouarzazate, Morocco, 1–8 September, Abstracts, p. 37.Google Scholar
Benammi, M., Elkati, I., Adnet, S., Marivaux, L., Tabuce, R., Surault, J., Baidder, L., Saddiqi, O. & Benammi, M. 2014b. Preliminary paleomagnetic data in the Dakhla, Southwestern Moroccan Sahara. In Proceedings of Second North African Vertebrate Palaeontology Congress-NAVEP2, Ouarzazate, Morocco, 1–8 September, Abstracts, p. 40.Google Scholar
Bohaty, S. M., Zachos, J. C. & Delaney, M. L. 2012. Foraminiferal Mg/Ca evidence for Southern Ocean cooling across the Eocene/Oligocene transition. Earth and Planetary Science Letters 317–8, 251–61.Google Scholar
Coster, P., Benammi, M., Lazzari, V., Billet, G., Martin, T., Salem, M., Abolhassan Bilal, A., Chaimanee, Y., Schuster, M., Valentin, X., Brunet, M. & Jaeger, J.-J. 2010. Gaudeamus lavocati sp. nov. (Rodentia, Hystricognathi) from the lower Oligocene of Zallah, Libya: first African Caviomorph? Naturwissenschaften 97, 697–70.Google Scholar
Coster, P., Benammi, M., Salem, M., Bilal Awad, A., Chaimanee, Y., Valentin, X., Brunet, M. & Jaeger, J. J. 2012. New hystricognathous rodent from the Early Oligocene of central Libya, (Zallah Oasis, Sahara Desert): systematic, phylogenetic, and biochronologic implications. Annals of Carnegie Museum 80, 239–59.Google Scholar
Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H. & Backman, J. 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53–7.Google Scholar
Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E. & Miller, K. G. 2009. Ocean overturning since the Late Cretaceous: inferences from a new benthic foraminiferal isotope compilation. Paleoceanography 4 (24), doi: 10.1029/2008PA001683.Google Scholar
Davison, I. 2005. Central Atlantic margin basins of North West Africa: geology and hydrocarbon potential (Morocco to Guinea). Journal of African Earth Sciences 43 (1–3), 254–74.Google Scholar
Davison, I. & Dailly, P. 2010. Salt tectonics in the Cap Boujdour Area, Aaiun Basin, NW Africa. Marine and Petroleum Geology 27, 435–41.Google Scholar
Deperet, C. 1912. Sur l’âge des couches du Rio de Oro. Comptes Rendus de l'Académie des Sciences 13, 123–4.Google Scholar
Erhardt, A. M., Pälike, H. & Paytan, A. 2013. High-resolution record of export production in the eastern equatorial Pacific across the Eocene-Oligocene transition and relationships to global climatic records. Paleoceanography 28, 130–42.Google Scholar
Fejfar, O. 1987. Oligocene rodents from Zallah Oasis, Libya. Münchner Geowissenschaftliche Abhandlungen A10, 265–8.Google Scholar
Front, Y. & Sague, N. 1911. Les formations géologiques du Rio de Oro, Sahara espagnol. Bulletin de la Société Géologique de France 4, 212–7.Google Scholar
Gingerich, P. H. 1993. Oligocene age of the Gebel Qatrani Formation, Fayum, Egypt. Journal of Human Evolution 24, 207–18.Google Scholar
Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. (eds) 2012. The Geologic Time Scale 2012. Amsterdam, Netherlands: Elsevier, 1144 pp.Google Scholar
Joleaud, L. 1907. Note sur quelques dents de Poissons fossiles du Rio de Oro (Sahara occidental). Bulletin de la Société Géologique de France 7, 514.Google Scholar
Katz, M. E., Miller, K. G., Wright, J. D., Wade, B. S., Browning, J. V., Cramer, B. S. & Rosenthal, Y. 2008. Stepwise transition from the Eocene greenhouse to the Oligocene icehouse. Nature Geosciences 1, 329–34.Google Scholar
Kirschvink, J. L. 1980. The least-square line and plane and analysis of palaeomagnetic data. Geophysical Journal of the Royal Astronomical Society 62, 699718.Google Scholar
Klingelhoefer, F., Labails, C., Cosquer, E., Rouzo, S., Géli, L., Aslanian, D., Olivet, J.-L., Sahabi, M., Nouzé, H. & Unternehr, P. 2009. Crustal structure of the SW-Moroccan margin from wide-angle and reflection seismic data (the Dakhla experiment) Part A: Wide-angle seismic models. Tectonophysics 468, 6382.Google Scholar
Kolonic, S., Sinninghedamsté, J. S., Böttcher, M. E., Kuypers, M. M. M., Kuhnt, W., Beckmann, B., Scheeder, G. & Wagner, T. 2002. Geochemical characterization of Cenomanian/Turonian black shales from the Tarfaya Basin (SW Morocco). Journal of Petroleum Geology 25, 325–50.Google Scholar
Lear, C. H., Bailey, T. R., Pearson, P. N., Coxall, H. K. & Rosenthal, Y. 2008. Cooling and ice growth across the Eocene-Oligocene transition. Geology 36, 251–4.Google Scholar
Lecointre, G. 1962. Sur la géologie de la presqu'ile de villa Cisneron, Rio de Oro. Comptes Rendus de l'Académie des Sciences 254, 1121–2.Google Scholar
Lecointre, G. 1966. Néogène et Quaternaire du Rio de Oro (Maroc Espagnol). Comptes Rendus de l'Académie des Sciences 10, 404–5.Google Scholar
Lowrie, W. 1990. Identification of ferrimagnetic minerals in rock by coercivity and unblocking temperature properties. Geophysical Research Letters 17, 159–62.Google Scholar
Marivaux, L., Adnet, S., Benammi, M., Tabuce, R. & Benammi, M. 2017a. Anomaluroid rodents from the earliest Oligocene of Dakhla, Morocco, reveal the long-lived and morphologically conservative pattern of the Anomaluridae and Nonanomaluridae during the Tertiary in Africa. Journal of Systematic Palaeontology 15 (7), 539–69.Google Scholar
Marivaux, L., Adnet, S., Benammi, M., Tabuce, R., Yans, Y. & Benammi, M. 2017b. Earliest Oligocene hystricognathous rodents from the Atlantic margin of Northwestern Saharan Africa (Dakhla, Morocco): systematic, paleobiogeographical and paleoenvironmental implications. Journal of Vertebrate Paleontology, published online September 2017, doi: 10.1080/02724634.2017.1357567.Google Scholar
Miller, K. G., Wright, J. D. & Fairbanks, R. G. 1991. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy and margin erosion. Journal of Geophysical Research 96, 6829–48.Google Scholar
Ortlieb, L. 1975. Recherches sur les formations plio-quaternaire du littoral Ouest Saharien (28° 30′-20° 40′). PhD thesis, Pierre et Marie-Curie University, Paris VI. Published thesis (Travaux et Documents de l'ORSTOM, 48, 267 pp).Google Scholar
Premoli-Silva, I. & Jenkins, D. G. 1993. Decision on the Eocene-Oligocene boundary stratotype. Episodes 16, 379–82.Google Scholar
Ranke, U., Von Raad, U. & Wissmann, G. 1982. Stratigraphy, facies, and tectonic development of on- and offshore Aaiun-Tarfaya Basin: a review. In Geology of the North West African Continental Margin (ed. Raad, U. Von), pp. 86104. Berlin: Springer-Verlag.Google Scholar
Rasmussen, D. T. & Gutiérrez, M. 2010. Hyracoidea. In The Cenozoic Mammals of Africa (eds Werdlin, L. & Sanders, W. J.), pp. 123–46. Berkeley: University of California Press.Google Scholar
Ratschiller, L. K. 1967. Sahara, correlazioni geologico-litostratigrapfiche fra Sahara Centrale ed Occidentale. Memoire del Museo Tridentino di Scienze Naturali 16, 55190.Google Scholar
Rjimati, E., Zemmouri, A., Benlakhdim, A., Amzaehou, M., Essalmani, B., Mustaphi, H., Haimouk, M. & Hamidi, F. 2008. Carte Géologique du Maroc. Ad-Dakhla, 1/100 000. Notes et Mémoires Service Géologique du Maroc, 487.Google Scholar
Sachse, V. F., Heim, S., Jabour, H., Kluth, O., Schümann, T., Aquit, M. & Littke, R. 2014. Organic geochemical characterization of Santonian to Early Campanian organic matter-rich marls (Sondage No. 1 cores) as related to OAE3 from the Tarfaya Basin, Morocco. Marine and Petroleum Geology 56, 290304.Google Scholar
Sachse, V. F., Littke, R., Heim, S., Kluth, O., Schober, J., Boutib, L., Jabour, H., Perssen, F. & Sindern, S. 2011. Petroleum source rocks of the Tarfaya Basin and adjacent areas, Morocco. Organic Geochemistry 42, 209–27.Google Scholar
Saddiqi, O., Rjimati, E., Michard, A., Soulaimani, A. & Ouanaimi, H. 2015. Recommended Geoheritage Trails in Southern Morocco: A 3 Ga Record Between the Sahara Desert and the Atlantic Ocean. In From Geoheritage to Geoparks, Case Studies from Africa and Beyond (eds Errami, E., Margaret, B. & Vic, S.), pp. 91108. Switzerland: Springer.Google Scholar
Sallam, H. M. & Seiffert, E. R. 2016. New phiomorph rodents from the latest Eocene of Egypt, and the impact of Bayesian “clock” based phylogenetic methods on estimates of basal hystricognath relationships and biochronology. PeerJ 4, e1717.Google Scholar
Sallam, H. M., Seiffert, E. R. & Simons, E. L. 2011. Craniodental morphology and systematics of a new family of hystricognathous rodents (Gaudeamuridae) from the Late Eocene and Early Oligocene of Egypt. PLoS ONE 6, e16525eol.Google Scholar
Sarkar, A., Sarangib, S., Ebiharac, M., Bhattacharyad, S. K. & Raye, A. K. 2003.Carbonate geochemistry across the Eocene/Oligocene boundary of Kutch, western India: implications to oceanic O2-poor condition and foraminiferal extinction. Chemical Geology 201, 281–93.Google Scholar
Seiffert, E. R. 2006. Revised age estimates for the later Paleogene mammal faunas of Egypt and Oman. Proceedings of the National Academy of Sciences of the USA 103, 5000–5.Google Scholar
Seiffert, E. R. 2012. Early primate evolution in Afro-Arabia. Evolutionary Anthropology 21, 239–53.Google Scholar
Simons, E. L., Holroyd, P. A. & Bown, T. M. 1991. Early Tertiary elephant shrews from Egypt and the origin of the Macroscelidea. Proceedings of the National Academy of Sciences of the USA 88, 9734–7.Google Scholar
Simons, E. L. & Rasmussen, D. T. 1996. Skull of Catopithecus browni, an early Tertiary catarrhine. American Journal of Physical Anthropology 100, 261–92.Google Scholar
Storme, J.-Y., Devleeschouwer, X., Schnyder, J., Cambier, G., Baceta, J. I., Pujalte, V., Iacumin, P. & Yans, J. 2012. Paleocene/Eocene boundary section at Zumaia (Basque-Catabric Basin) revisited: new insights from high resolution magnetic susceptibility and carbon isotope chemostratigraphy on organic matter (δ13Corg). Terra Nova 24, 310–7.Google Scholar
Strechie, C., Andre, F., Jelinowska, A., Tucholka, P., Guichard, F., Lericolais, G. & Panin, N. 2002. Magnetic minerals as indicators of major environmental change in Holocene Black Sea sediments: preliminary results. Physics Chemistry Earth 27, 1363–70.Google Scholar
Tramoy, R., Salpin, M., Schnyder, J., Person, A., Sebilo, M., Yans, J., Vaury, V., Fozzani, J. & Bauer, H. 2016. Stepwise paleoclimate change across the Eocene-Oligocene transition recorded in continental NW Europe by mineralogical assemblages and δ15Norg (Rennes Basin, France). Terra Nova 28, 212–20.Google Scholar
Tudryn, A. & Tucholka, P. 2004. Magnetic monitoring of thermal alteration for natural pyrite and greigite. Acta Geophysica Polonica 52, 509–20.Google Scholar
Underwood, C. J., King, C. & Steurbaut, E. 2013. Eocene initiation of Nile drainage due to East African uplift. Palaeogeography, Palaeoclimatology, Palaeoecology 392, 138–45.Google Scholar
Vandenberghe, N., Hilgen, F. J. & Speijer, R. 2012. The Paleogene Period. In The Geological Time Scale (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.), pp. 855921. Oxford: Elsevier Science Ltd.Google Scholar
Wood, A. E. 1968. Part II: The African Oligocene Rodentia. In Early Cenozoic Mammalian Faunas Fayum Province, Egypt (ed. Remington, J.E.), pp. 23105. New Haven, Connecticut: Peabody Museum of Natural History, Yale University.Google Scholar
Yans, J., Gerards, T., Gerrienne, P., Spagna, P., Dejax, J., Schnyder, J., Storme, J.-Y. & Keppens, E. 2010. Carbon-isotope of fossil wood and dispersed organic matter from the terrestrial Wealden facies of Hautrage (Mons basin, Belgium). Palaeogeography, Palaeoclimatology, Palaeoecology 291, 85105.Google Scholar
Zhifei, L., Shouting, T., Quanhong, Z., Xinrong, C. & Wei, H. 2004. Deep-water Earliest Oligocene Glacial Maximum (EOGM) in South Atlantic. Chinese Science Bulletin 49, 2190–7.Google Scholar
Zijderveld, J. D. A. 1967. AC demagnetization rocks: Analyses of results. In Methods in Paleomagnetism (eds Collinson, D. W., Creer, K. M. & Runcorn, S. K.), pp. 254–86. Amsterdam, Netherlands: Elsevier Scientific.Google Scholar
Zouhri, S., Gingerich, P. D., El Boudali, N., Sebti, S., Noubhani, A., Rahali, M. & Meslouh, S. 2014. New marine mammal faunas (Cetacea and Sirenia) and sea level change in the Samlat Formation, upper Eocene, near Ad-Dakhla in southwestern Morocco. Comptes Rendus Palevol 13, 599610.Google Scholar