Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T03:17:05.646Z Has data issue: false hasContentIssue false

Geochronology and geochemistry of Neoproterozoic mafic rocks from western Hunan, South China: implications for petrogenesis and post-orogenic extension

Published online by Cambridge University Press:  30 November 2007

XIAO-LEI WANG
Affiliation:
State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, PR China
JIN-CHENG ZHOU*
Affiliation:
State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, PR China
JIAN-SHENG QIU
Affiliation:
State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, PR China
SHAO-YONG JIANG
Affiliation:
State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, PR China
YU-RUO SHI
Affiliation:
Beijing SHRIMP Center, Chinese Academy of Geological Sciences, Beijing 100026, PR China
*
Author for correspondence: [email protected]

Abstract

The Neoproterozoic mafic rocks in western Hunan, South China, form a NNE-striking mafic rock belt for which outcrops are found predominantly in Guzhang, Qianyang and Tongdao. Samples from Qianyang and Tongdao yielded ion microprobe U–Pb zircon ages of 747±18 Ma and 772±11 Ma, respectively. The mafic rocks are geochemically divided into two subtypes. Ultramafic rocks from Tongdao are depleted in Nb and Ti, with decoupled Nd–Hf isotopes, and geochemical features similar to the c. 761 Ma mafic–ultramafic rocks from Longsheng, northern Guangxi. Their εNd(t) value is −2.91, implying an enriched mantle source. Alkaline mafic rocks from Qianyang and Guzhang have high values of TiO2, total alkali, some high field strength elements and (La/Yb)N, and low Zr/Nb, La/Nb, Sm/Nd and 143Nd/144Nd ratios as well as coupled Nd–Hf isotopes. They are geochemically similar to ocean island basalts and show fractional crystallization of Fe–Ti oxides, olivine and pyroxene in the mafic magma. The c. 760 Ma mafic rocks in western Hunan may be the products of post-orogenic magmatism. After the Jinningian (Sibao) orogenic process, the upwelling of the deep asthenospheric mantle caused by the break-off and detachment of the subducted oceanic slab led to extension in the area. The extension might have taken place earlier in the Tongdao and Longsheng areas, which led to the partial melting of the lithospheric mantle that had been metasomatized during early oceanic subduction to generate a relatively large amount of sub-alkaline rocks. However, the less alkaline mafic rocks in Qianyang and Guzhang might have been generated in the relatively later stage of the extension, and may have resulted from a small degree of partial melting of the asthenospheric mantle.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arndt, N. T. & Christensen, U. 1992. The role of lithospheric mantle in continental flood volcanism: thermal and geochemical constraints. Journal of Geophysical Research 97, 10967–81.CrossRefGoogle Scholar
BGMRGX (Bureau of Geology and Mineral Resources of Guangxi Province). 1985. Regional Geology of Guangxi Province. Geological Publishing House, Beijing (in Chinese, with English abstract).Google Scholar
BGMRHN (Bureau of Geology and Mineral Resources of Hunan Province). 1988. Regional Geology of Hunan Province. Beijing: Geological Publishing House (in Chinese, with English abstract).Google Scholar
Black, L. P., Kamo, S. L., Williams, I. S., Mundil, R., Davis, D. W., Korsch, R. J. & Foudoulis, C. 2003. The application of SHRIMP to Phanerozoic geochronology: a critical appraisal of four zircon standards. Chemical Geology 200, 171–88.CrossRefGoogle Scholar
Blichert-Toft, J., Chauvel, C. & Albarede, F. 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP–MS. Contributions to Mineralogy and Petrology 127, 248–60.CrossRefGoogle Scholar
Bonin, B., Sekkal, A. A., Bussy, F. & Ferrag, S. 1998. Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: petrologic constraints and geodynamic settings. Lithos 45, 4570.CrossRefGoogle Scholar
Bradshaw, T. K., Hawkesworth, C. J. & Gallagher, K. 1993. Basaltic volcanism in the Southern Basin and Range: No role for a mantle plume. Earth and Planetary Science Letters 116, 4562.CrossRefGoogle Scholar
Chen, J. F., Foland, K. A., Xing, F. M., Xu, X. & Zhou, T. X. 1991. Magmatism along the southeast margin of the Yangtze block: Precambrian collision of the Yangtze and Cathysia blocks of China. Geology 19, 815–18.Google Scholar
Cheng, H. 1993. Geochemistry of Proterozoic island-arc volcanic rocks in northwest Zhejiang. Geochimica 1, 1827 (in Chinese with English abstract).Google Scholar
Class, C., Altherr, R., Volker, F., Eberz, G. & McCulloch, M. T. 1994. Geochemistry of Pliocene to Quaternary alkali basalts from the Huri Hills, northern Kenya. Chemical Geology 113, 122.CrossRefGoogle Scholar
Coish, R. A. & Sinton, C. W. 1992. Geochemistry of mafic dikes in the Adirondack mountains: implications for late Proterozoic continental rifting. Contributions to Mineralogy and Petrology 110, 500–14.CrossRefGoogle Scholar
Compston, W., Williams, I. S., Kirschvink, J. L., Zhang, Z. C. & Ma, G. G. 1992. Zircon U–Pb ages for the Early Cambrian time-scale. Journal of the Geological Society, London 149, 171–84.CrossRefGoogle Scholar
Cvetković, V., Prelević, D., Downes, H., Jovanović, M., Vasellid, O. & Pécskay, Z. 2004. Origin and geodynamic significance of Tertiary postcollisional basaltic magmatism in Serbia (central Balkan Peninsula). Lithos 73, 161–86.CrossRefGoogle Scholar
Daley, E. E. & DePaolo, D. J. 1992. Isotopic evidence for lithospheric thinning during extension: Southeastern Great Basin. Geology 20, 104–8.2.3.CO;2>CrossRefGoogle Scholar
Davies, J. H. & Blanckenburg, F. V. 1995. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters 129, 85102.CrossRefGoogle Scholar
Dunphy, J. M., Ludden, J. N. & Francis, D. 1995. Geochemistry of mafic magmas from the Ungava orogen, Québec, Canada, and implications for mantle reservoir compositions at 2.0 Ga. Chemical Geology 120, 361–80.CrossRefGoogle Scholar
England, P. C. & Houseman, G. A. 1989. Extension during continental convergence with application to the Tibetan Plateau. Journal of Geophysical Research 18, 1173–7.Google Scholar
Fitton, J. G., James, D., Kempton, P. D., Ormerod, D. S. & Leeman, W. P. 1988. The role of lithospheric mantle in the generation of late Cenozoic basic magmas in the western United States. In Oceanic and continental lithosphere: similarities and differences (eds Cox, K. G. & Menzies, M. A.), pp. 331–49. Journal of Petrology (Special Lithosphere Issue).CrossRefGoogle Scholar
Fitton, J. G., James, D. & Leeman, W. P. 1991. Basic magmatism associated with Late Cenozoic extension in the western United States: compositional variation in space and time. Journal of Geophysical Research 96, 13693–711.CrossRefGoogle Scholar
Foden, J., Song, S. H., Turner, S., Elburg, M., Smith, P. B., Van Der Steldt, B. & Van Penglis, D. 2002. Geochemical evolution of lithospheric mantle beneath S.E. South Australia. Chemical Geology 182, 663–95.CrossRefGoogle Scholar
Franzini, M., Leoni, L. & Saitta, M. 1972. A simple method to evaluate the matrix effect in X-ray fluorescence analysis. X-ray Spectrometry 1, 151–4.CrossRefGoogle Scholar
Ge, W. C., Li, X. H., Li, Z. X., Zhou, H. W., Wang, J. & Li, J. Y. 2000. “Longsheng ophiolite” in northern Guangxi revisited. Acta Petrologica Sinica 16, 111–18 (in Chinese with English abstract).Google Scholar
Ge, W. C., Li, X. H., Li, Z. X. & Zhou, H. W. 2001. Mafic intrusions in Longsheng area: age and its geological implications. Chinese Journal of Geology 36, 112–18 (in Chinese with English abstract).Google Scholar
Goolaerts, A., Mattielli, N., de Jong, J., Weis, D. & Scoates, J. S. 2004. Hf and Lu isotopic reference values for the zircon standard 91500 by MC-ICP-MS. Chemical Geology 206, 19.CrossRefGoogle Scholar
Guo, L. Z., Shi, Y. S. & Ma, R. S. 1980. The geotectonic framework and crustal evolution of South China. In Scientific paper on geology for international exchange, pp. 109–16. Beijing: Geological Publishing House (in Chinese with English abstract).Google Scholar
Halliday, A. N., Lee, D. C., Tommasini, S., Davies, G. R., Paslick, C. R., Fitton, J. G. & James, D. E. 1995. Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. Earth and Planetary Science Letters 133, 379–95.CrossRefGoogle Scholar
He, A. S. & Han, X. G. 1992. Characteristics and geological environment of volcanic rocks from Yiyang. Hunan Geology 11, 269–74 (in Chinese with English abstract).Google Scholar
HRGST (Hunan Regional Geological Survey Team). 1965. Regional Geological Survey Report (Jishou area, 1:200000) (in Chinese).Google Scholar
HRGST (Hunan Regional Geological Survey Team). 1999. Regional Geological Survey Report (Dasheping area and Qianyang area, 1:50000) (in Chinese).Google Scholar
Jiang, G. Q., Sohl, L. E. & Blick, N. C. 2003. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (South China): paleogeographic implications. Geology 31, 917–20.CrossRefGoogle Scholar
Kelemen, P. B., Johnson, K. T. M., Kinzler, R. J. & Irving, A. J. 1990. High-field-strength element depletions in arc basalts due to mantle–magma interaction. Nature 345, 521–4.CrossRefGoogle Scholar
Kempton, P. D., Fitton, J. G., Hawkesworth, C. J. & Ormerod, D. S. 1991. Isotopic and trace element constraints on the composition and evolution of the lithosphere beneath the southeastern United States. Journal of Geophysical Research 96, 13713–35.CrossRefGoogle Scholar
Lassiter, J. C., Blichert-Toft, J., Hauri, E. H. & Barsczus, H. G. 2003. Isotope and trace element variations in lavas from Raivavae and Rapa, Cook–Austral islands: constraints on the nature of HIMU- and EM-mantle and the origin of mid-plate volcanism in French Polynesia. Chemical Geology 202, 115–38.CrossRefGoogle Scholar
Li, X. H., Zhou, G. Q., Zhao, J. X., Fanning, C. M. & Compston, W. 1994. SHRIMP Ion Microprobe Zircon U–Pb Age and Sm–Nd Isotopic Characteristics of the NE Jiangxi Ophiolite and Its Tectonic Implications. Chinese Journal of Geochemistry 13, 317–25.Google Scholar
Li, Z. X., Li, X. H., Kinny, P. D. & Wang, J. 1999. The breakup of Rodinia: Did it start with a mantle plume beneath South China? Earth and Planetary Science Letters 173, 171–81.CrossRefGoogle Scholar
Li, Z. X., Li, X. H., Kinny, P. D., Wang, J., Zhang, S., Zhou, H. W. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Research 122, 85109.CrossRefGoogle Scholar
Liu, H. Y., Hao, J. & Li, R. J. 1999. Late-Precambrian stratigraphy and geological evolution in the middle-eastern China. Beijing: Science Press, 200 pp. (in Chinese).Google Scholar
Ludwig, K. R. 1999. Using Isoplot/EX, version 2, A Geochronological toolkit for Microsoft Excel. Berkeley: Berkeley Geochronological Center Special Publication 1a: 47.Google Scholar
Ma, L. F., Qiao, X. F., Min, L. R., Fan, B. X. & Ding, X. Z. 2002. Chinese geological illustrated handbook, pp. 245–52. Beijing: Geological Publishing House.Google Scholar
Macdonald, R., Millward, D., Beddoe-Stephens, B. & Laybourn-Parry, J. 1988. The role of tholeiitic magmatism in English Lake district: evidence from dyke in Eskdale. Mineralogical Magazine 52, 459–72.CrossRefGoogle Scholar
Maitre, R. W. L., Bateman, P., Dudek, A., Keller, J., Lemeyre, J, Bas, M. J. L., Sabine, P. A., Schmid, R., Sorensen, H., Streckeisen, A., Wooley, A. R. & Zanettin, B. 1989. A classification of igneous rocks and glossary of terms. Oxford: Blackwell.Google Scholar
McDonough, W. F. 1990. Constraints on the composition of the continental lithospheric mantle. Earth and Planetary Science Letters 101, 118.CrossRefGoogle Scholar
McKenzie, D. P. & Bickle, M. J. 1988. The volume and composition of melt generated by extension of lithosphere. Journal of Petrology 29, 625–79.CrossRefGoogle Scholar
McKenzie, D. P. & O'Nions, R. K. 1995. The source regions of Ocean Island Basalts. Journal of Petrology 36, 133–59.CrossRefGoogle Scholar
Meschede, M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram. Chemical Geology 56, 207–18.CrossRefGoogle Scholar
Pearce, J. A. 1982. Trace element characteristic of lavas from destructive plate boundaries. In Andesites (ed. Thorpe, R. S.), pp. 528–48. New York: Wiley.Google Scholar
Pedersen, S. A. S., Craig, L. E., Upton, B. G. J., Rämö, O. T., Jepsen, H. F. & Kalsbeek, F. 2002. Palaeoproterozoic (1740 Ma) rift-related volcanism in the Hekla Sund region, eastern North Greenland: field occurrence, geochemistry and tectonic setting. Precambrian Research 114, 327–46.CrossRefGoogle Scholar
Polat, A. & Münker, C. 2004. Hf–Nd isotope evidence for contemporaneous subduction processes in the source of late Archean arc lavas from the Superior Province, Canada. Chemical Geology 213, 403–29.CrossRefGoogle Scholar
Qiu, J. X. & Zeng, G. C. 1987. Mineral chemistry of the low-pressure clinopyroxenes from the Cenozoic basalts of Eastern China and its petrological significance. Acta Petrologica Sinica 4, 19 (in Chinese with English abstract).Google Scholar
Rao, J. R., Wang, J. H. & Cao, Y. Z. 1993. Deep structures in Hunan Province. Hunan Geology suppl. (7), pp. 3–854 (in Chinese).Google Scholar
Saunders, A. D., Storey, M., Kent, W. R. & Norry, M. J. 1992. Consequences of plume–lithosphere interactions. In Magmatism and the causes of continental break-up (eds Storey, B. C., Alabaster, T. & Pankhurst, R. J.), pp. 4160. Geological Society of London, Special Publication no. 68.Google Scholar
Saunders, A. D. & Tarney, J. 1988. Origin of MORB and chemically depleted mantle reservoirs: trace element constraints. Journal of Petrology (Special Lithosphere Issue), 425–45.Google Scholar
Scherer, E., Münker, C. & Mezger, K. 2001. Calibration of the lutetium–hafnium clock. Science 293, 683–7.CrossRefGoogle ScholarPubMed
Shen, J., Zhang, Z.Q. & Liu, D. Y. 1997. Sm–Nd, Rb–Sr, 40Ar/39Ar, and 207Pb/206Pb age of the Douling metamorphic complex from eastern Qinling Orogenic belt. Earth Science – Journal of China University of Geosciences 18, 248–54 (in Chinese with English abstract).Google Scholar
Shu, L. S., Zhou, G. Q., Shi, Y. S. & Yin, J. 1994. Study of high pressure metamorphic blueschist and its late Proterozoic age in the eastern Jiangnan belt. Chinese Science Bulletin 39, 1200–4.Google Scholar
Sun, S. S. & Mcdonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes. In Magmatism in the Ocean Basins (Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Tang, X. S., Huang, J. Z. & Guo, L. Q. 1997. Hunan Banxi Group and its tectonic environment. Hunan Geology 16, 219–26 (in Chinese with English abstract).Google Scholar
Thompson, R. N. & Morrison, M. A. 1988. Asthenospheric and lower lithospheric mantle contributions to continental extension magmatism: an example from the British Tertiary Province. Chemical Geology 68, 115.CrossRefGoogle Scholar
Teixeira, W., Pinese, J. P. P., Iacumin, M., Girardi, V. A. V., Piccirillo, E. M., Echeveste, H., Ribot, A., Fernandez, R., Renne, P. R. & Heaman, L. M. 2002. Calc-alkaline and tholeiitic dyke swarms of Tandilia, Rio de la Plata craton, Argentina: U/Pb, Sm/Nd, and Rb/Sr 40Ar/39Ar data provide new clues for intraplate rifting shortly after the Trans-Amazonian orogeny. Precambrian Research 119, 329–53.CrossRefGoogle Scholar
Vervoort, J. D., Patchett, P. J., Söderlund, U. & Baker, M. 2004. Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotopic dilution using MC-ICPMS. Geochemistry Geophysics Geosystems 5 (11), Q11002: doi 10.1029/2004GC000721.CrossRefGoogle Scholar
Vilà, M., Pin, C., Enrique, P. & Liesa, M. 2005. Telescoping of three distinct magmatic suites in an orogenic setting: Generation of Hercynian igneous rocks of the Albera Massif (Eastern Pyrenees). Lithos 83, 97127.CrossRefGoogle Scholar
Wang, J. 2000. Neoproterozoic rifting history of south China: significance to Rodinia breakup. Geological Publishing House, Beijing (in Chinese)Google Scholar
Wang, J. & Li, Z. X. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia breakup. Precambrian Research 122, 141–58.CrossRefGoogle Scholar
Wang, X. L., Zhou, J. C., Qiu, J. S. & Gao, J. F. 2004a. Comment on ‘Neoproterozoic granitoids in South China: crustal melting above a mantle plume at c. 825 Ma?’ by Xian-Hua Li et al. (PR 122, 45–83, 2003). Precambrian Research 132, 401–3.CrossRefGoogle Scholar
Wang, X. L., Zhou, J. C., Qiu, J. S. & Gao, J. F. 2004b. Geochemistry of the Meso- to Neoproterozoic basic-acid rocks from Hunan Province, South China: implications for the evolution of the western Jiangnan orogen. Precambrian Research 135, 79103.CrossRefGoogle Scholar
Wang, X. L., Zhou, J. C., Qiu, J. S., Zhang, W. L., Liu, X. M. & Zhang, G. L. 2006. LA-ICPMS U–Pb zircon geochronology of the Neoproterozoic igneous rocks from northern Guangxi, South China: implications for petrogenesis and tectonic evolution. Precambrian Research 145, 111–30.CrossRefGoogle Scholar
Weaver, B. L. 1991. The origin of ocean island basalt end-member composition: trace element and isotopic constraints. Earth and Planetary Science Letters 104, 381–97.CrossRefGoogle Scholar
Williams, I. S., Buick, I. S. & Cartwright, I. 1996. An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia. Journal of Metamorphic Geology 14, 2947.CrossRefGoogle Scholar
Winchester, J. A. & Floyd, P. A. 1977. Geochemical discrimination of different magma series and their differentiation products. Chemical Geology 20, 325–43.CrossRefGoogle Scholar
Woodhead, J., Hergt, J., Shelley, M., Eggins, S. & Kemp, R. 2004. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chemical Geology 209, 121–35.CrossRefGoogle Scholar
Wu, F. Y., Wilde, S. A., Zhang, G. L. & Sun, D. Y. 2004. Geochronology and petrogenesis of the post-orogenic Cu–Ni sulfide-bearing mafic–ultramafic complexes in Jilin Province, NE China. Journal of Asian Earth Sciences 23, 781–97.CrossRefGoogle Scholar
Wu, R. X., Zheng, Y. F. & Wu, Y. B. 2005. Zircon U–Pb age, element and oxygen isotopic geochemistry of Neoproterozoic granodiorites in South Anhui. Acta Petrologica Sinica 21, 587606 (in Chinese with English abstract).Google Scholar
Wu, X. B., Dai, T. G. & He, S. X. 2001. The geochemical characteristics of light metasedimentary rock for Gaojian Group and their geological implication in the southwest Hunan. Acta Petrologica Sinica 17, 653–62 (in Chinese with English abstract).Google Scholar
Xu, P., Wu, F. Y., Xie, L. W. & Yang, Y. H. 2004. Hf isotopic compositions of the standard zircons for U-Pb dating. Chinese Science Bulletin 49, 1642–8.CrossRefGoogle Scholar
Yang, Z. Y., Sun, Z. M., Yang, T. S. & Pei, J. L. 2004. A long connection (750–380 Ma) between South China and Australia: paleomagnetic constraints. Earth and Planetary Science Letters 220, 423–34.CrossRefGoogle Scholar
Zhao, G. C. & Cawood, P. A. 1999. Tectonothermal evolution of the Mayuan assemblage in the Cathaysia Block: implications for Neoproterozoic collision-related assembly of the South China craton. American Journal of Science 299, 309–39.CrossRefGoogle Scholar
Zheng, J. J., Jia, B. H., Liu, Y. R. & Cao, J. H. 2001. Age, magma source and formation environment of mafic–ultramafic rocks in the Anjiang area, western Hunan. Regional Geology of China 20, 164–9 (in Chinese with English abstract).Google Scholar
Zhou, J. C., Wang, X. L., Qiu, J. S. & Gao, J. F. 2004. Geochemistry of Meso- and Neoproterozoic mafic–ultramafic rocks from northern Guangxi, China: arc or plume magmatism? Geochemical Journal 38, 139–52.CrossRefGoogle Scholar
Zhou, J. C., Wang, X. L. & Qiu, J. S. 2005. The characters of magmatism in the western section of the Jiangnan Orogenic belt. Geological Journal of China University 11 (4), 527–33 (in Chinese with English abstract).Google Scholar
Zhou, M. F., Yan, D. P., Kennedy, A. K., Li, Y. Q. & Ding, J. 2002. SHRIMP U–Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters 196, 5167.CrossRefGoogle Scholar
Zhou, M. F., Lesher, C. M., Yang, Z. X., Lia, J. W. & Sun, M. 2004. Geochemistry and petrogenesis of 270 Ma Ni–Cu–(PGE) sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology 209, 233–57.CrossRefGoogle Scholar
Zhou, X. M. & Zhu, Y. H. 1993. Petrological evidences of Neoproterozoic collision-orogenic and suture belts in southeastern China. In Lithospheric structures and geological evolution in continent from southeastern China (ed. J. L. Li), pp. 8797. Beijing: Metallurgical Industry Press (in Chinese).Google Scholar
Supplementary material: File

Wang supplementary material

Supplementary table 5

Download Wang supplementary material(File)
File 99.8 KB