Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T16:16:08.741Z Has data issue: false hasContentIssue false

Geochemical implications of gabbro from the slow-spreading Northern Central Indian Ocean Ridge, Indian Ocean

Published online by Cambridge University Press:  12 October 2010

DWIJESH RAY
Affiliation:
National Centre for Antarctic and Ocean Research, Goa 403804, India
SAUMITRA MISRA*
Affiliation:
School of Geological Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
RANADIP BANERJEE
Affiliation:
National Institute of Oceanography, Goa 403004, India
DOMINIQUE WEIS
Affiliation:
Pacific Centre for Isotope and Geochemical Research, University of British Columbia, Canada
*
Author for correspondence: [email protected]; [email protected]

Abstract

Gabbro samples (c. < 0.4 Ma old) dredged from close to the ‘Vityaz Megamullion’ on the slow-spreading Northern Central Indian Ridge (NCIR, 18–22 mm yr−1) include mostly olivine gabbro and Fe–Ti oxide gabbro. The cumulate olivine gabbro shows ophitic to subophitic texture with early formed plagioclase crystals in mutual contact with each other, and a narrow range of compositions of olivine (Fo80–81), clinopyroxene (magnesium number: 85–87) and plagioclase (An67–70). This olivine gabbro could be geochemically cogenetic with the evolved oxide gabbro. These gabbro samples are geochemically distinct from the CIR gabbro occurring along the Vema, Argo and Marie Celeste transform faults and can further be discriminated from the associated NCIR basalts by their clinopyroxene (augite in gabbro, and diopsidic in basalts) and olivine (gabbro: Fo80–81, basalts: Fo82–88) compositions. Our major oxide, trace element and REE geochemistry analyses suggest that the gabbro and the NCIR basalts are also not cogenetic and had experienced different trends of geochemical evolution. The clinopyroxenes of the present NCIR gabbros are geochemically similar to primitive melt that is in equilibrium with mantle peridotite, and do not show any poikilitic texture with resorbed plagioclase; these results negate the possibility of these gabbros being a pre-existing cumulate that has been brought up to the shallower oceanic crust and interacted with the NCIR basalt. The Sr, Pb and Nd isotopic data of the gabbro substantially differ from those of the NCIR basalts and suggest significant contamination of the depleted mantle source of the gabbro, most likely by the Indian Ocean pelagic sediments. The Pb-isotope data suggest that the proportion of pelagic sediment that mixed in the depleted mantle source of the NCIR gabbro is much higher than the level of contamination observed for the Indian Ocean MORBs.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allègre, C. J., Treuil, M., Minster, J. F., Minster, B. & Albarede, F. 1977. Systematic use of trace elements in igneous processes. Part I: Fractional crystallization processes in volcanic suites. Contributions to Mineralogy and Petrology 62, 5775.CrossRefGoogle Scholar
Balaram, V., Gnaneshwara Rao, T. & Anjaiah, K. V. 1999. International proficiency tests for analytical geochemistry laboratories: an assessment of accuracy and precision in routine geochemical analysis. Journal Geological Society of India 53, 417–23.Google Scholar
Ben Othman, D., White, W. M. & Patchett, J. 1989. The geochemistry of marine sediments, island arc magma genesis, and crust–mantle recycling. Earth and Planetary Science Letters 94, 121.CrossRefGoogle Scholar
Bédard, J. H. 1991. Cumulate recycling and crustal evolution in the Bay of Islands ophiolite. Journal of Geology 99, 225–49.CrossRefGoogle Scholar
Bédard, J. H. & Hebert, R. 1996. The lower crust of the Bay of Islands ophiolite, Canada: petrology, mineralogy and the importance of syntexis in magmatic differentiation in ophiolites and at ocean ridges. Journal of Geophysical Research 101, 25105–24.CrossRefGoogle Scholar
Bédard, J. H., Hebert, R., Berclaz, A. & Barfalvy, V. 2000. Syntexis and the genesis of the lower oceanic crust. In Ophiolites and Oceanic Crust: New insights from field studies and the Ocean Drilling Program (eds Dilek, Y., Moores, E. M., Eltohn, D. & Nicolas, A.), pp. 105–19. Geological Society of America, Special Paper no. 349.Google Scholar
Bloomer, S. H., Natland, J. H. & Fisher, R. L. 1989. Mineral relationships in gabbroic rocks from fracture zones of Indian Ocean ridges: evidence for extensive fractionation, parental diversity and boundary layer recrystallisation. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 107–24. Geological Society of London, Special Publication no. 42.Google Scholar
Carlo De, E. H. 1993. Geochemistry of pore water and sediments recovered from Leg 136, Hawaiian Arch. In Proceedings of Ocean Drilling Program, Scientific Results, vol. 136 (eds Wilkens, R. H., Firth, J., Bender, J. et al. ), pp. 7783. College Station, Texas.Google Scholar
Casey, J. F. 1997. Comparison of major- and trace-element geochemistry of abyssal peridotites and mafic plutonic rocks with basalts from the MARK region of the Mid-Atlantic Ridge. In Proceedings of Ocean Drilling Program, Scientific Results, vol. 153 (eds Karson, J. A., Cannat, M., Miller, D. J. & Elthon, D.), pp. 181241. College Station, Texas.Google Scholar
Casey, J. F., Braun, M. G., Fujiwara, T., Matsumoto, T., Kelemen, P. B. & The scientific party. 1998. Megamullions along the Mid-Atlantic Ridge between 14 and 16°N: Results of Leg 1, JAMSTEC/WHOI Mode 98 survey. EOS Transactions AGU, 79, Fall Meeting Supplement, F920.Google Scholar
Casey, J. F., Banerji, D. & Zarian, P. 2007. Leg 179 synthesis: geochemistry, stratigraphy, and structure of gabbroic rocks drilled in ODP Hole 1105A, Southwest Indian Ridge. In Proceedings of Ocean Drilling Program, Scientific Results, vol. 179 (eds Casey, J. F. & Miller, D. J.), pp. 1125. College Station, Texas.Google Scholar
Cocherie, A. 1986. Systematic use of trace element distribution patterns in log–log diagrams for plutonic suites. Geochimica et Cosmochimica Acta 50, 2517–22.CrossRefGoogle Scholar
Coogan, L. A., Macleod, C. J., Dick, H. J. B., Edwards, S. J., Kvassnes, A., Natland, J. H., Robinson, P. T., Thompson, G. & O'Hara, M. J. 2001. Whole-rock geochemistry of gabbros from the southwest Indian ridge: constraints on geochemical fractionations between the upper and lower oceanic crust and magma chamber processes at (very) slow spreading ridges. Chemical Geology 178, 122.CrossRefGoogle Scholar
Deer, W. A., Howie, R. A. & Zussman, J. 1992. An Introduction to the Rock-Forming Minerals. Longman Scientific and Technical, 696 pp.Google Scholar
Dick, H. J. B., Robinson, P. T. & Meyer, P. S. 1992. The plutonic foundation of a slow-spreading ridge. In The Indian Ocean: A synthesis of results from the Ocean Drilling Program (eds Duncan, R. A., Rea, D. K., Weissel, J. K., von Rad, U. & Kidd, R. B.), pp. 150. Geophysical Monograph no. 70. Washington DC: American Geophysical Union.Google Scholar
Dick, H. J. B., Natland, J. H. & Miller, D. J. (eds) 1999. Proceedings of Ocean Drilling Program, Initial Reports (CD-ROM). Ocean Drilling Program, College Station, Texas.Google Scholar
Dick, H. J. B., Natland, J. H., Alt, J. C., Bach, W., Bideau, D., Gee, J. S., Haggas, S., Hertogen, J. G. H., Hirth, G., Holm, P. M., Ildefonse, B., Iturrino, G. J., John, B. E., Kellet, D. S., Kikawa, E., Kingdom, A., Leroux, P. J., Maede, J., Meyer, P. S., Miller, D. J., Naslund, H. R., Niu, Y., Robinson, P. T., Snow, J., Stephen, R. A., Trimy, P. W., Worm, H. U. & Yoshinobu, A. 2000. A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian ridge. Earth and Planetary Science Letters 179, 3151.CrossRefGoogle Scholar
Dick, H. J. B., Ozawa, K., Meyer, P. S., Niu, Y., Robinson, P. T., Constantin, M., Hebert, R., Maeda, J., Natland, J. H., Hirth, G. & Mackie, S. 2002. Primary silicate mineral chemistry of a 1.5-km section of very slow spreading lower ocean crust: ODP Hole 735B, Southwest Indian Ridge. In Proceedings of Ocean Drilling Program, Scientific Results, vol. 176 (eds Natland, J. H., Dick, H. J. B., Miller, D. J. & Von Herzen, R.), pp. 160. College Station, Texas.Google Scholar
Dick, H. J. B., Tivey, M. A. & Tucholke, B. E. 2008. Plutonic foundation of a slow-spreading ridge segment: oceanic core complex at Kane Megamullion. Geochemistry Geophysics Geosystems 9, doi:1029/2007GC001645.CrossRefGoogle Scholar
Dosso, L., Bougault, H., Beuzart, P., Calvez, J.-Y. & Joron, J.-L. 1988. The geochemical structure of the South-East Indian Ridge. Earth and Planetary Science Letters 88, 4759.CrossRefGoogle Scholar
Drolia, R. K., Iyer, S. D., Chakraborty, B., Kodagali, V., Ray, D., Misra, S., Andrade, R., Sarma, K. V. L. N. S., Rajasekhar, R. P. & Mukhopadhyay, R. 2003. The Northern Central Indian Ridge: geology and tectonics of fracture zones-dominated spreading ridge segments. Current Science 85, 290–8.Google Scholar
Drolia, R. K. & DeMets, C. 2005. Deformation in the diffuse India-Capricorn-Somalia triple junction from a multibeam and magnetic survey of the northern Central Indian ridge, 3°S–10°S. Geochemistry Geophysics Geosystems 6 (9), doi 10.1029/2005GC00950.CrossRefGoogle Scholar
Dupré, B. & Allègre, C. J. 1983. Pb–Sr isotope variations in Indian Ocean basalts and mixing phenomena. Nature 303, 142–6.CrossRefGoogle Scholar
Elthon, D., Casey, J. F. & Komor, S. 1982. Mineral chemistry of ultramafic cumulates from the North Arm Mountain massif of the Bay of Islands ophiolite: evidence for high-pressure crystal fractionation of oceanic basalts. Journal of Geophysical Research 87, 8717–34.CrossRefGoogle Scholar
Elthon, D. 1987. Petrology of gabbroic rocks from the Mid-Cayman rise spreading center. Journal of Geophysical Research 92, 658–82.CrossRefGoogle Scholar
Engel, C. G. & Fisher, R. L. 1975. Granitic to ultramafic rock complexes of the Indian ocean ridge system, Western Indian Ocean. Bulletin Geological Society of America 82, 553–62.Google Scholar
Faure, G. & Mensing, T. M. 2005. Isotopes: principles and applications (3rd edition). Wiley, 897 pp.Google Scholar
Früh-Green, G. L., Plas, A. & Dell'angelo, L. N. 1996. Mineralogic and stable isotope record of polyphase alteration of upper crustal gabbros of the pacific rise (Hess Deep, Site 894). In Proceedings Ocean Drilling Program, Scientific Results vol. 147 (eds Mevel, C., Gillis, K. M., Allan, J. F. & Meyer, P. S.), pp. 235–54. College Station, Texas.Google Scholar
Galer, S. J. G. & Abouchami, W. 1998. Practical application of lead triple spiking for correction of instrumental mass discrimination. Mineralogical Magazine 62A, 491–2.CrossRefGoogle Scholar
Gao, Y., Snow, J. E., Hellebrand, E., von der Handt, A., Dick, H. & Hoefs, J. 2003. Petrology of gabbros from Gakkel ridge. Geophysical Research Abstracts 5, 14591.Google Scholar
Gurenko, A. A. & Sobolev, A. V. 2006. Crust–primitive magma interaction beneath neovolcanic rift zone of Iceland recorded in gabbro xenolith from Midfell, SW Iceland. Contributions to Mineralogy and Petrology 151, 495520.CrossRefGoogle Scholar
Hanan, B. B., Blichert-Toft, J., Pyle, D. G. & Christie, D. M. 2004. Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge. Nature 432, 91–4.CrossRefGoogle ScholarPubMed
Hart, S. R. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309, 753–7.CrossRefGoogle Scholar
Hart, S. R., Blusztajn, J., Dick, H. J. B., Meyer, P. S. & Muehlenbach, K. 1999. The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros. Geochimica et Cosmochimica Acta 63, 4059–80.CrossRefGoogle Scholar
Hebert, R., Constantin, M. & Robinson, P. T. 1991. Primary mineralogy of Leg 118 gabbroic rocks and their place in the spectrum of oceanic mafic igneous rocks. In Proceedings Ocean Drilling Program, Scientific Results, vol. 118 (eds Von Herzen, R. P., Robinson, P. T. et al. ), pp. 320. College Station, Texas.Google Scholar
Hebert, R. D., Bideau, D. & Hekinian, R. 1983. Ultramafics and mafic rocks from the Garret transform fault near 13°30’S on the East Pacific Rise: igneous petrology. Earth and Planetary Science Letters 65, 107–25.CrossRefGoogle Scholar
Ildefonse, B., Blackman, D. K., John, B. E., O'Hara, Y., Miller, D. J., Macleod, C. J. & Integrated Drilling Program Expeditions 304/305 Science Party. 2007. Oceanic core complexes and crustal accretion at slow-spreading ridges. Geology 35, 623–6.CrossRefGoogle Scholar
Irvine, T. N. 1982. Terminology for layered intrusions. Journal of Petrology 23, 127–62.CrossRefGoogle Scholar
Kempton, P. D., Pearce, J. A., Barry, T. L., Fitton, J. G., Langmuir, C. & Christie, D. M. 2002. Sr–Nd–Pb–Hf isotope results from ODP Leg 187: evidence for mantle dynamics of the Australian–Antarctic Discordance and origin of the Indian MORB source. Geochemistry Geophysics Geosystems 3, doi: 10.1029/2002GC000320.CrossRefGoogle Scholar
Kurz, M. D., Le Roex, A. P. & Dick, H. 1998. Isotope geochemistry of the mantle beneath the Bouvet Triple Junction. Geochimica et Cosmochimica Acta 62, 841–52.CrossRefGoogle Scholar
Kurz, M. D., Warren, J. M. & Curtice, J. 2009. Mantle deformation and noble gases: helium and neon in oceanic mylonites. Chemical Geology 266, 1018.CrossRefGoogle Scholar
Langmuir, C. H., Vocke, R. D. Jr, Hanson, G. N. & Hart, S. H. 1978. A general mixing equation with applications to Icelandic basalts. Earth and Planetary Science Letters 37, 380–92.CrossRefGoogle Scholar
Langmuir, C. H. 1989. In-situ fractional crystallization. Nature 342, 512–15.Google Scholar
Lindsley, D. H. 1983. Pyroxene thermometry. American Mineralogist 68, 477–93.Google Scholar
Lissenberg, C. J. & Dick, H. J. B. 2008. Melt-rock reaction in the lower oceanic crust and its implications for the genesis of mid-ocean ridge basalt. Earth and Planetary Science Letters 271, 311–25.CrossRefGoogle Scholar
Mahoney, J. J., Natland, J. H., White, W. M., Poreda, R., Bloomer, S. H., Fisher, R. L. & Baxter, A. N. 1989. Isotopic and geochemical provinces of the western Indian Ocean spreading centers. Journal of Geophysical Research 94, 4033–52.CrossRefGoogle Scholar
McDonough, W. F. & Sun, S. S. 1995. The composition of the Earth. Chemical Geology 120, 223–53.CrossRefGoogle Scholar
Meyer, P. S., Dick, H. J. B. & Thompson, G. 1989. Cumulate gabbros from the Southwest Indian Ridge, 54°S–7°16’E: implications for magmatic processes at a slow spreading ridge. Contributions to Mineralogy and Petrology 103, 4463.CrossRefGoogle Scholar
Meyzen, C. M., Blichert-Toft, J., Ludden, J. N., Humler, E., Mevel, C. & Albarede, F. 2007. Isotopic portrayal of the earth's upper mantle flow field. Nature 447, 1069–74.CrossRefGoogle ScholarPubMed
Michard, A., Montigny, R. & Schlich, R. 1986. Geochemistry of the mantle beneath the Rodriguez triple junction and the South-East Indian Ridge. Earth and Planetary Science Letters 78, 104–14.CrossRefGoogle Scholar
Miyashiro, A. & Shido, F. 1980. Differentiation of gabbros in the mid-Atlantic ridge near 24°N. Geochemical Journal 14, 145–54.CrossRefGoogle Scholar
Morishita, T., Hara, K., Nakalura, K., Sawaguchi, T., Tamura, A., Arai, S., Okino, K., Takai, K. & Kumagai, H. 2009. Igneous, alteration and exhumation processes recorded in abyssal peridotites and related fault rocks from an oceanic core complex along the Central Indian Ridge. Journal of Petrology 50, 12991325.CrossRefGoogle Scholar
Nakamura, K., Sato, H., Sato, Y. & Ishii, T. 2006. Petrological and geochemical study of the Indian Ocean MORB from the Rodriguez Triple Junction, Indian Ocean. American Geophysical Union Fall Meeting, B31B-1104.Google Scholar
Nobre Silva, I. G., Weis, D., Barling, J. & Scoates, J. S. 2009. Leaching systematics and matrix elimination for the determination of high-precision Pb-isotope compositions of ocean island basalts. Geochemistry Geophysics Geosystems 10, doi 10.1029/2009GC002537.CrossRefGoogle Scholar
Pluger, W. L. & Cruise Participants. 1989. Fahrtbericht SO-28 and Wissenschaftlicher Bericht GEMINO-I: Geothermal Metallogenesis Indian Ocean, 274 pp.Google Scholar
Pouchou, J-.L. & Pichoir, F. 1988. A simplified version of the “PAP” model for matrix correction in EPMA. In Microbeam Analyses 1988 (ed. Newbury, D. E.), pp. 315–18. San Francisco Press.Google Scholar
Presnall, D. C. & Hoover, J. D. 1987. High pressure phase equilibrium constraints on the origin of mid-ocean ridge basalts, In Magmatic Processes: Physicochemical principles (ed. Mysen, B. O.), pp. 7589. Geophysical Monograph no. 71. Washington, DC: American Geophysical Union.Google Scholar
Price, R. C., Kennedy, A. K., Riggs-Sneeringer, M. & Frey, F. A. 1986. Geochemistry of basalts from the Indian ocean triple junction: implications for the generation and evolution of Indian Ocean ridge basalts. Earth and Planetary Science Letters 78, 379–96.CrossRefGoogle Scholar
Ray, D., Iyer, S. D., Banerjee, R., Misra, S. & Widdowson, M. 2007. A petrogenetic model of basalts from the Northern Central Indian Ridge (3–11°S): implications for the evolution of MORB. Acta Geologica Sinica (English edition) 81, 99112.Google Scholar
Rehkamper, M. & Hofmann, A. W. 1997. Recycled ocean crust and sediment in Indian Ocean MORB. Earth and Planetary Science Letters 147, 93106.CrossRefGoogle Scholar
Ridley, W. L., Perfit, M. R., Smith, M. C. & Fornari, D. J. 2006. Magmatic processes in developing oceanic crust revealed in a cumulate xenolith collected at the East Pacific Rise, 9°50’N. Geochemistry Geophysics Geosystems 7, doi:10.1029/2006GC001316.CrossRefGoogle Scholar
Shipboard Scientific Party. 2004. Leg 209 Summary. In Proceedings Ocean Drilling Program Initial Reports, vol. 209 (eds Kelemen, P. B., Kikawa, E. & Miller, D. J.), pp. 1139. College Station, Texas.CrossRefGoogle Scholar
Subbarao, K. V. & Hedge, C. E. 1973. K, Rb, Sr and 87Sr/86Sr in rocks from the Mid-Indian Ocean Ridge. Earth and Planetary Science Letters 18, 223–8.CrossRefGoogle Scholar
Taylor, S. R. & McLennan, S. M. 1985. The Continental Crust: Its composition and evolution. Blackwell Science Publications, 312 pp.Google Scholar
Tiezzi, L. J. & Scott, R. B. 1980. Crystal fractionation in a cumulate gabbro, Mid-Atlantic Ridge, 26°N. Journal of Geophysical Research 85, 5438–54.CrossRefGoogle Scholar
Thy, P. 2003. Igneous petrology of gabbros from Hole 1105A: oceanic magma chamber processes. In Proceeding Ocean Drilling Program, Scientific Results, vol. 179 (eds Casey, J. F. & Miller, D. J.), pp. 176. College Station, Texas.Google Scholar
Treuil, M. & Varet, J. 1973. Critères volcanologiques, pètrologiques et gèochimiques de la genèse et de la différenciation des magmas basaltiques: example de ľAfar. Bulletin Society of Geologique France 15, 506–40.CrossRefGoogle Scholar
Vanko, D. A. & Batiza, R. 1980. Gabbroic rocks from the Mathematician Ridge failed rift. Nature 300, 742–4.CrossRefGoogle Scholar
Villiger, S., Ulmer, P., Muntener, O. & Thompson, A. B. 2004. The liquid line of descent of anhydrous, mantle derived, tholeiitic liquids by fractional and equilibrium crystallization – an experimental study at 1.0 GPa. Journal of Petrology 45, 2369–88.CrossRefGoogle Scholar
Villemant, B., Jaffrezic, H., Joron, J. L. & Treuil, M. 1981. Distribution coefficients of major and trace elements; fractional crystallization in the alkali basalt series of Chaine des Puys (Massif Central, France). Geochimica et Cosmochimica Acta 45, 19972016.CrossRefGoogle Scholar
Walker, D., Shibata, T. & Delong, S. E. 1979. Abyssal tholeiites from the Oceanographer fracture zone II: phase equillibria and mixing. Contributions to Mineralogy and Petrology 70, 111–25.CrossRefGoogle Scholar
Walker, D. & Delong, S. E. 1984. A small Soret effect in spreading center gabbros. Contributions to Mineralogy and Petrology 85, 203–8.CrossRefGoogle Scholar
Weis, D. & Frey, F. A. 1996. Role of the Kerguelen plume in generating the eastern Indian Ocean seafloor. Journal of Geophysical Research 101 (B6), 13831–49.CrossRefGoogle Scholar
Weis, D., Kieffer, B., Maerschalk, C., Pretorius, W. & Barling, J. 2005. High-precision Pb–Sr–Nd–Hf isotopic characterization of USGS BHVO-1 and BHVO-2 reference materials. Geochemistry Geophysics Geosystems 6, Q02002, doi:10.1029/2004GC000852.CrossRefGoogle Scholar
Weis, D., Kieffer, B., Maerschalk, C., Barling, J., De Jong, J., Williams, G. A., Hanano, D., Pretorius, W., Mattielli, N., Scoates, J. S., Goolaerts, A., Friedman, R. M. & Mahoney, J. B. 2006. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochemistry Geophysics Geosystems 7, Q08006, doi:10.1029/2006GC001283.CrossRefGoogle Scholar
Weis, D., Kieffer, B., Hanano, D., Silva, I. N., Barling, J., Pretorius, W., Maerschalk, C. & Mattielli, N. 2007. Hf isotope compositions of U. S. Geological Survey reference materials. Geochemistry Geophysics Geosystems 8, Q06006, doi:10.1029/2006GC001473.CrossRefGoogle Scholar
White, W. M. 1999. Trace elements in igneous processes. In Encyclopedia of Earth Sciences (ed. Dasch, E. J.), pp. 256307. Macmillan.Google Scholar
Winter, J. D. 2001. A Introduction to Igneous and Metamorphic Petrology. New Jersey: Prentice Hall, 697 pp.Google Scholar
Workman, R. K. & Hart, S. R. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters 231, 5372.CrossRefGoogle Scholar
Supplementary material: File

Ray Supplementary Material

Appendix.doc

Download Ray Supplementary Material(File)
File 282.6 KB