Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T05:28:02.844Z Has data issue: false hasContentIssue false

Genesis of the Chehugou Mo-bearing granitic complex on the northern margin of the North China Craton: geochemistry, zircon U–Pb age and Sr–Nd–Pb isotopes

Published online by Cambridge University Press:  24 November 2011

QING-DONG ZENG*
Affiliation:
Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, P. O. Box 9825, Beijing 100029, China
JIN-HUI YANG
Affiliation:
Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, P. O. Box 9825, Beijing 100029, China
JIAN-MING LIU
Affiliation:
Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, P. O. Box 9825, Beijing 100029, China
SHAO-XIONG CHU
Affiliation:
Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, P. O. Box 9825, Beijing 100029, China
XIAO-XIA DUAN
Affiliation:
Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, P. O. Box 9825, Beijing 100029, China
ZUO-LUN ZHANG
Affiliation:
Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, P. O. Box 9825, Beijing 100029, China
WEI-QING ZHANG
Affiliation:
Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, P. O. Box 9825, Beijing 100029, China
SONG ZHANG
Affiliation:
Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, P. O. Box 9825, Beijing 100029, China
*
*Author for correspondence: [email protected]

Abstract

The Chehugou granite-hosted molybdenum deposit is typical of the Xilamulun metallogenic belt, which is an important Mo–Ag–Pb–Zn producer in China. A combination of major and trace element, Sr and Nd isotope, and zircon U–Pb isotopic data are reported for the Chehugou batholith to constrain its petrogenesis and Mo mineralization. The zircon SIMS U–Pb dating yields mean ages of 384.7 ± 4.0 Ma and 373.1 ± 5.9 Ma for monzogranite and syenogranite and 265.6 ± 3.5 Ma and 245.1 ± 4.4 Ma for syenogranite porphyry and granite porphyry, respectively. The Devonian granites are calc-alkaline with K2O/Na2O ratios of 0.44–0.52, the Permian granites are alkali-calcic with K2O/Na2O ratios of 1.13–1.25, and the Triassic granites are calc-alkaline and alkali-calcic rocks with K2O/Na2O ratios of 0.78–1.63. They are all enriched in large-ion lithophile elements (LILEs) and depleted in high-field-strength elements (HFSEs) with negative Nb and Ta anomalies in primitive mantle-normalized trace element diagrams. They have relatively high Sr (189–1256 ppm) and low Y (3.87–5.43 ppm) concentrations. The Devonian granites have relatively high initial Sr isotope ratios of 0.7100–0.7126, negative ɛNd(t) values of −12.3 to −12.4 and 206Pb/204Pb ratios of 16.46–17.50. In contrast, the Permian and Triassic granitoids have relatively low initial 87Sr/86Sr ratios (0.7048–0.7074), negative ɛNd(t) values of −10.1 to −13.1 and 206Pb/204Pb ratios of 17.23–17.51. These geochemical features suggest that the Devonian, Permian and Triassic Chehugou granitoids were derived from ancient, garnet-bearing crustal rocks related to subduction of the Palaeo-Asian Ocean and subsequent continent–continent collision between the North China and Siberian plates.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atherton, M. P. & Petford, N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362, 144–6.CrossRefGoogle Scholar
Barbarin, B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46, 605–26.CrossRefGoogle Scholar
Batchelor, R. A. & Bowden, P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology 48, 4355.CrossRefGoogle Scholar
Black, L. P., Kamo, S. L., Aleiikof, J. N., Davis, D. W., Korsch, R. L. & Foudoulis, C. 2003. TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chemical Geology 200, 155–70.CrossRefGoogle Scholar
Boynton, W. V. 1984. Cosmochemistry of rare earth elements: meteorite studies. In Rare Earth Element Geochemistry (ed. Henderson, P.), pp. 63114. Amsterdam: Elsevier.CrossRefGoogle Scholar
Bureau of Geology and Mineral Resources of Neimongol Autonomous Region (BGMR). 1991. Regional Geology of Neimongol Autonomous Region. Beijing: Geological Publishing House, 532 pp. (in Chinese).Google Scholar
Candela, P. A. & Piccoli, P. 2005. Magmatic processes in the development of porphyry-type ore systems. In Economic Geology, 100th Anniversary Volume (eds Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J. & Richards, J. P.), pp. 2537. Littleton, Colorado: Society of Economic Geologists.Google Scholar
Carten, R. B., White, W. H. & Stein, H. J. 1993. High-grade granite-related molybdenum systems: classification and origin. In Mineral Deposit Modelling (eds Kirkham, R. V., Sinclair, W. D., Thorpe, R. I. & Duke, J. M.), pp. 521–44. Geological Association of Canada, Special Paper no. 40.Google Scholar
Chen, F. K., Hegner, E. & Todt, W. 2000. Zircon ages, Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany – evidence for a Cambrian magmatic arc. International Journal of Earth Sciences 88, 791802.CrossRefGoogle Scholar
Chen, W. J., Liu, J. M., Liu, H. T., Zhang, Z. L., Qin, F. & Zhang, R. B. 2010. Geochronology and fluid study of the Jiguanshan porphyry Mo deposit, Inner Mongolia. Acta Petrologica Sinica 26, 1423–36 (in Chinese with English abstract).Google Scholar
Chen, F. K., Siebel, W., Satir, M., Terzioglu, N. & Saka, K. 2002. Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone. International Journal of Earth Sciences 91, 469–81.CrossRefGoogle Scholar
Chen, Z. S., Zhang, L. G., Liu, J. X., Wang, B. C., Xu, J. F. & Zheng, W. S. 1994. A study on lead isotope geochemical backgrounds of geological bodies in Jiaodong region. Contributions to Geology and Mineral Resources Research 10, 6578 (in Chinese with English abstract).Google Scholar
Condie, K. C. 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology 104, 137.CrossRefGoogle Scholar
Defant, M. J. & Drummond, M. S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662–5.CrossRefGoogle Scholar
Didier, J. & Barbarin, B. 1991. Enclaves and Granite Petrology. Developments in Petrology 13. Amsterdam: Elsevier, 625 pp.Google Scholar
Dobretsov, N. L., Berzin, N. A. & Buslov, M. 1995. Opening and tectonic evolution of the Paleo-Asian Ocean. International Geology Review 37, 335–60.CrossRefGoogle Scholar
Eichelberger, J. C. 1980. Vesiculation of mafic magma during replenishment of silicic magma reservoirs. Nature 288, 446–50.CrossRefGoogle Scholar
Frost, B. R., Barnes, C. G., Collins, W. J., Argulus, R. J., Ellis, D. J. & Frost, C. D. 2001. A geochemical classification for granitic rocks. Journal of Petrology 42, 2033–48.CrossRefGoogle Scholar
Gao, S., Liu, X. M., Yuan, H. L., Hattendorf, B., Gunther, D., Chen, L., & Hu, S. H. 2002. Determination of forty-two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards Newsletter 26, 191–6.CrossRefGoogle Scholar
Hart, S. R. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309, 753–7.CrossRefGoogle Scholar
Holden, P., Halliday, A. N. & Stephens, W. E. 1987. Neodymium and strontium isotope content of microdiorite enclaves points to mantle input to granitoid production. Nature 330, 53–6.CrossRefGoogle Scholar
Hong, D. W., Wang, S. G., Xie, X. L. & Zhang, J. S. 2000. Genesis of positive ɛNd(t) granitoids in Da Hinggan Mountains–Mongolia orogenic belt and growth of continental crust. Earth Science Frontiers 7, 441–56 (in Chinese with English abstract).Google Scholar
Hong, D. W., Wang, S. G., Xie, X. L., Zhang, J. S. & Wang, T. 2003. Correlation between continental growth and the supercontinental cycle: evidence from the granites with positive ɛNd in the Central Asian orogenic belt. Acta Geologica Sinica 77, 203–9 (in Chinese with English abstract).Google Scholar
Jahn, B. M., Wu, F. Y., Lo, C. H. & Tsai, C. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr–Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology 157, 119–46.CrossRefGoogle Scholar
Kesler, S. E., Jones, L. M. & Walker, R. L. 1975. Intrusive rocks associated with porphyry copper mineralization in island arc areas. Economic Geology 70, 515–26.CrossRefGoogle Scholar
Kooiman, G. J. A., McLeod, M. J. & Sinclair, W. D. 1986. Porphyry tungsten-molybdenum orebodies, polymetallic veins and replacement bodies, and tin-bearing greisen zones in the Fire Tower Zone, Mount Pleasant, New Brunswick. Economic Geology 81, 1356–73.CrossRefGoogle Scholar
Kuster, D. & Harms, U. 1998. Post-collisional potassic granitoids from the southern and northwestern parts of the late Neo-proterozoic East African Orogen: a review. Lithos 45, 177–95.CrossRefGoogle Scholar
Li, X. H., Liu, Y., Li, Q. L., Guo, C. H. & Chamberlain, K. R. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochemistry Geophysics Geosystems 10, Q04010, doi:10.1029/2009GC002400, 21 pp.Google Scholar
Li, S. C. & Wang, S. L. 1995. Geochemical characteristics of gold deposits of the north margin of the North China Continental Table, China. Contributions to Geology and Mineral Resources Research 10, 819 (in Chinese with English abstract).Google Scholar
Liu, J. M., Zhao, Y., Sun, Y. L., Li, D. P., Liu, J., Chen, B. L., Zhang, S. H. & Sun, W. D. 2010. Recognition of the latest Permian to Early Triassic Cu–Mo mineralization on the northern margin of the North China block and its geological significance. Gondwana Research 17, 125–34.CrossRefGoogle Scholar
Ludwig, K. R. 2001. Users Manual for Isoplot/Ex Rev. 2.49. Berkeley Geochronology Centre Special Publication no. 1a, 56 pp.Google Scholar
Martin, H. 1999. Adakitic magma: modern analogues of Archean granitoids. Lithos 46, 411–29.CrossRefGoogle Scholar
Miao, L. C., Fan, W. M., Liu, D. Y., Zhang, F. Q., Shi, Y. R. & Guo, F. 2008. Geochronology and geochemistry of the Hegenshan ophiolitic complex: implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. Journal of Asian Earth Sciences 32, 348–70.CrossRefGoogle Scholar
Mutschler, F. E., Wright, E. G., Ludington, S. & Abbott, J. T. 1981. Granite molybdenite systems. Economic Geology 76, 874–97.CrossRefGoogle Scholar
Nie, F. J., Zhang, W. Y., Du, A. D., Jiang, S. H. & Liu, Y. 2007. Re-Os isotopic dating on molybdenite separates from the Xiaodonggou porphyry Mo deposit, Hexigten Qi, Mongolia. Acta Geologica Sinica 81, 898905 (in Chinese with English abstract).Google Scholar
Ohmoto, H. 1986. Stable isotope geochemistry of ore deposits. In Reviews in Mineralogy vol. 16: Stable Isotopes in High Temperature Geological Processes (eds Valley, J. W., Taylor, H. P. & O'Neil, J. R.), pp.491559. Mineralogical Society of America.CrossRefGoogle Scholar
Patino Douce, A. E. 1999. What do experiments tell us about the relative contribution of crust and mantle to the origin of granitic magmas? In Understanding Granites: Integrating New and Classical Techniques (eds Castro, A., Fernández, C. & Vignersse, J. L.), pp. 5576. Geological Society of London, Special Publication no. 168.Google Scholar
Qin, F., Liu, J. M., Zeng, Q. D. & Luo, Z. H. 2009. Petrogenetic and metallogenic mechanism of the Xiaodonggou porphyry molybdenum deposit in Hexigten Banner, Inner Mongolia. Acta Petrologica Sinica 25, 3357–68 (in Chinese with English abstract).Google Scholar
Rui, Z. Y., Shi, L. D. & Fang, R. L. 1994. Geology and Nonferrous Metallic Deposits in the Northern Margin of the North China Landmass and its Adjacent Area. Beijing: Geological Publishing House, 476 pp. (in Chinese).Google Scholar
Seedorff, E., Dilles, J. H., Proffett, J. M. Jr & Einaudi, M. T. 2005. Porphyry deposits: characteristics and origin of hypogene features. Economic Geology, 100th Anniversary Volume (eds Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J. & Richards, J. P.), pp. 251–98. Littleton, Colorado: Society of Economic Geologists.Google Scholar
Selby, D., Nesbitt, B. E., Muehlenbachs, K. & Prochaska, W. 2000. Hydrothermal alteration and fluid chemistry of the Endako porphyry molybdenum deposit, British Columbia. Economic Geology 95, 183202.CrossRefGoogle Scholar
Shang, Q. H. 2004. The discovery of the Permian radiolarian in Middle-Eastern Inner Mongolia, North China Orogenic Belt, and its significance. Chinese Science Bulletin 49, 2574–9 (in Chinese).Google Scholar
Shi, G. H., Miao, L. C., Zhang, F. Q., Jian, P., Fan, W. M. & Liu, D. Y. 2004. The time of A-type granite of Xilinhaote, Inner Mongolia, and its tectonic significance. Chinese Science Bulletin 49, 384–9 (in Chinese).CrossRefGoogle Scholar
Sillitoe, R. H. 1980. Types of porphyry molybdenum deposits. Mining Magazine 142, 550–3.Google Scholar
Sláma, J., Koler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N. & Whitehouse, M. J. 2008. Plesovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.CrossRefGoogle Scholar
Song, B., Zhang, Y. & Wan, Y. S. 2002 Mount making and procedure of the SHRIMP dating. Geological Review 48(Supp), 2630 (in Chinese).Google Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–21.CrossRefGoogle Scholar
Taylor, S. R. & McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications, 312 pp.Google Scholar
Titley, S. R. & Beane, R. E. 1981. Porphyry copper deposits. In Economic Geology Seventy-Fifth Anniversary Volume, 1905–1980 (ed. Skinner, B. J.), pp. 214–69. Economic Geology Publishing Co.Google Scholar
Vernon, R. H. 1984. Microgranitoid enclaves in granite-globules of hybrid magma quenched in a plutonic environment. Nature 309, 438–9.CrossRefGoogle Scholar
Vernon, R. H. & Flood, R. H. 1988. Contrasting deformation of Sand I-type granitoids in the Lachlan fold belt, eastern Australia. Tectonophysics 147, 127–43.CrossRefGoogle Scholar
Wan, B., Hegner, E., Zhang, L. C., Rocholl, A., Chen, Z. G., Wu, H. Y. & Chen, F. K. 2009. Re-Os geochronology of chalcopyrite from the Chehugou porphyry Mo–Cu deposit (Northeast China) and geochemical constraints on origin of hosting granites. Economic Geology 104, 351–63.CrossRefGoogle Scholar
White, W. H., Bookstrom, A. A., Kamilli, R. J., Ganster, M. W., Smith, R. P., Ranta, D. E. & Steininger, R. C. 1981. Character and origin of Climax-type molybdenum deposits, In Economic Geology Seventy-Fifth Anniversary Volume, 1905–1980 (ed. Skinner, B. J.), pp. 270316. Economic Geology Publishing Co.Google Scholar
Windley, B. F., Kroner, A., Guo, J., Qu, G., Li, Y. & Zhang, C. 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution. Journal of Geology 110, 719–37.CrossRefGoogle Scholar
Wu, F. Y., Sun, D. Y. & Lin, Q. 1999. Petrogenesis of the Phanerozoic granites and crustal growth in Northeast China. Acta Petrologica Sinica 15, 181–9 (in Chinese with English abstract).Google Scholar
Wu, F. Y., Wilde, S. A., Zhang, G. L. & Sun, D. Y. 2004. Geochronology and petrogenesis of the post-orogenic Cu-Ni sulfide-bearing mafic–ultramafic complexes in Jilin Province, NE China. Journal of Asian Earth Sciences 23, 781–97.CrossRefGoogle Scholar
Wu, F. Y., Yang, J. H., Wilde, S. A. & Zhang, X. O. 2005. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chemical Geology 221, 127–56.CrossRefGoogle Scholar
Wu, H. Y., Zhang, L. C, Chen, Z. G. & Wan, B. 2008. Geochemistry, tectonic setting and mineralization potentiality of the ore-bearing monzogranite in the Kulitu molybdenum (copper) deposit of Xar moron metallogenic belt, Inner Mongolia. Acta Petrologica Sinica 24, 867–78 (in Chinese with English abstract).Google Scholar
Wu, H. Y., Zhang, L. C., Wan, B., Chen, Z. G., Xiang, P., Pirajno, F., Du, A. D. & Qu, W. J. 2011. Re–Os and 40Ar/39Ar ages of the Jiguanshan porphyry Mo deposit, Xilamulun metallogenic belt, NE China, and constraints on mineralization events. Mineralium Deposita 46, 171–85.CrossRefGoogle Scholar
Wu, F. Y., Zhao, G. C., Sun, D. Y., Wilde, S. A. & Yang, J. H. 2007. The Hulan Group: its role in the evolution of the Central Asian Orogenic Belt of NE China. Journal of Asian Earth Sciences 30, 542–56.CrossRefGoogle Scholar
Xiao, Q. H., Deng, J. F. & Ma, D. Q. 2002. The Ways of Investigation on Granitoids. Beijing: Geological Publishing House, 294 pp. (in Chinese with English abstract).Google Scholar
Xiao, W. J., Windley, B. F., Hao, J. & Zhai, M. G. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt. Tectonics 22, 1069, doi:10.1029/2002TC001484.CrossRefGoogle Scholar
Yang, J. H., Chung, S. L., Wilde, S. A., Wu, F. Y., Chu, M. F., Lo, C. H. & Fan, H. R. 2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, east China: geochronological, geochemical and Nd–Sr isotopic evidence. Chemical Geology 214, 99125.CrossRefGoogle Scholar
Yang, J. H., Wu, F. Y., Chung, S. L., Wilde, S. A. & Chu, M. F. 2004. Multiple sources for the origin of granites: geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves, northeast China. Geochimica et Cosmochimica Acta 68, 4469–83.CrossRefGoogle Scholar
Zartman, R. E. & Doe, B. R. 1981. Plumbotectonics: the model. Tectonophysics 75, 135–62.CrossRefGoogle Scholar
Zeng, Q. D., Liu, J. M., Qin, F. & Zhang, Z. L. 2010. Geochronology of the Xiaodonggou porphyry Mo deposit in northern margin of North China Craton. Resource Geology 60, 192202.CrossRefGoogle Scholar
Zeng, Q. D., Liu, J. M., Zhang, Z. L., Chen, W. J. & Zhang, W. Q. 2011 a. Geology and geochronology of the Xilamulun molybdenum metallogenic belt in eastern Inner Mongolia, China. International Journal of Earth Sciences 100, 17911809.CrossRefGoogle Scholar
Zeng, Q. D., Liu, J. M., Zhang, Z. L., Qin, F., Cheng, W. J., Yu, C. M. & Ye, J. 2009. Ore forming time of the Jiguanshan porphyry molybdenum deposit, north margin of North China Craton and the Indosinian mineralization. Acta Petrologica Sinica 25, 393–8 (in Chinese with English abstract).Google Scholar
Zeng, Q. D., Liu, J. M., Zhang, Z. L., Zhang, W. Q., Chu, S. X., Zhang, S., Wang, Z. C. & Duan, X. X. 2011 b. Geology, fluid inclusion, and sulfur isotope studies of the Chehugou porphyry molybdenum–copper deposit, Xilamulun metallogenic belt, NE China. Resource Geology 61, 241–58.CrossRefGoogle Scholar
Zhang, S. H., Liu, S. W., Zhao, Y., Yang, J. H., Song, B. & Liu, X. M. 2007. The 1.75–1.68 Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: magmatism related to a Paleoproterozoic orogen. Precambrian Research 155, 287312.CrossRefGoogle Scholar
Zhang, L. C., Wu, H. Y., Wan, B. & Chen, Z. G. 2009. Ages and geodynamic settings of Xilamulun Mo–Cu metallogenic belt in the northern part of the North China Craton. Gondwana Research 16, 243–54.CrossRefGoogle Scholar
Zindler, A. & Hart, S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Science 14, 493571.CrossRefGoogle Scholar