Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T12:56:30.048Z Has data issue: false hasContentIssue false

Gastropods from upper Pliensbachian–Toarcian (Lower Jurassic) sediments of Causses Basin, southern France and their recovery after the early Toarcian anoxic event

Published online by Cambridge University Press:  24 February 2015

ROBERTO GATTO*
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via G. Gradenigo 6, 35131, Padova, Italy
STEFANO MONARI
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via G. Gradenigo 6, 35131, Padova, Italy
PASCAL NEIGE
Affiliation:
Laboratoire Biogeosciences, UMR CNRS 6282, Université de Bourgogne, 6 boulevard Gabriel, 21000, Dijon, France
JEAN-DANIEL PINARD
Affiliation:
Laboratoire Biogeosciences, UMR CNRS 6282, Université de Bourgogne, 6 boulevard Gabriel, 21000, Dijon, France Musée National d’Histoire Naturelle, Section Paléontologie, 25 rue Münster, 2160 Luxembourg, Grand-Duchy of Luxembourg Fondation Faune-Flore, 24 rue Münster, 2160 Luxembourg, Grand-Duchy of Luxembourg
ROBERT WEIS
Affiliation:
Musée National d’Histoire Naturelle, Section Paléontologie, 25 rue Münster, 2160 Luxembourg, Grand-Duchy of Luxembourg
*
Author for correspondence: [email protected]

Abstract

A gastropod fauna has been studied from upper Pliensbachian – upper Toarcian deposits of two sections of the Causses Basin (southern France) in order to investigate the mode of recovery after the early Toarcian anoxic event. The fauna consists of 15 species, one of which is new (Bathrotomaria kronzwilmesorum sp. nov.). Their stratigraphical distribution shows two peaks of diversity – in the Bifrons Zone (Bifrons Subzone) and in the Aalensis Zone (Mactra Subzone) – which reflect brief times during which the oxygen content and bottom consistency favoured the settlement of a relatively diversified fauna. In the Variabilis–Pseudoradiosa zones, gastropods are only represented by two species. This probably indicates more severe and unstable environmental conditions, only allowing the survival of gastropod taxa with wide adaptive capacities. The very low species diversity and the discontinuous and slow faunal recovery were probably determined by physiographic factors. The Causses area was a small basin confined by exposed lands and open towards the central part of western Tethys. Gastropods described here occur exclusively in the Toarcian – early Aalenian communities of the European epicontinental seas, whereas species from the central region of western Tethys are absent. Geographic isolation and marginal location of the Causses Basin restricted faunal exchange with the western European epicontinental seas, preventing fast recovery after the anoxic event. Gastropods of the central region of the western Tethys were probably unable to settle and colonize that area due to the strongly different environment.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aberhan, M. & Baumiller, T. K. 2003. Selective extinction among Early Jurassic bivalves: a consequence of anoxia. Geology 31, 1077–80.Google Scholar
Baudrimont, A. F. & Dubois, P. 1977. Un bassin mésogéen du domain péri-alpin: le Sud-Est de la France. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine 1, 261308.Google Scholar
Bernoulli, D. & Jenkyns, H. C. 1974. Alpine, Mediterranean, and central Atlantic Mesozoic facies in relation to the early evolution of the Tethys. In Modern and Ancient Geosynclinal Sedimentation (eds Dott, R. H. & Shaver, R. H.), pp. 129–60. SEPM Special Publication no. 19.Google Scholar
Bourrouilh, R. 1966. Gastéropodes du Lias inférieur et moyen du domaine atlasique marocain. Notes et Mémoires du Service Géologique du Maroc 196, 2573.Google Scholar
Bronn, H. G. 1836. Lethaea Geognostica oder Abbildungen und Beschreibungen der für die Gebirgs-Formationen bezeichnendsten Versteinerungen. Erster Band, das Übergangs-bis Oolithen-Gebirge enthaltend. Lief. 3–5. Stuttgart: Schweizerbart, pp. 193480.Google Scholar
Brösamlen, R. 1909. Beitrag zur Kenntnis der Gastropoden des schwäbischen Jura. Palaeontographica 56, 177322.Google Scholar
Brown, T. 1849. Illustration of the Fossil Conchology of Great Britain and Ireland with Descriptions and Localities of all the Species. Edinburgh: Smith, Eldrer and Co., and MacLachlan and Stewart, 273 pp.Google Scholar
Buch, L. von. 1831. Recueil de Planches de Pétrifications Remarquables. Berlin: Académie Royale, 20 pp.Google Scholar
Buch, L. von. 1839. Über den Jura in Deutschland. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin 1837, 49135.Google Scholar
Buckman, S. S. 1904. The Inferior Oolite ammonites, Part 12. Monograph of the Palaeontographical Society 58, 65168.Google Scholar
Caruthers, A. H., Smith, P. L. & Gröcke, D. R. 2013. The Pliensbachian–Toarcian (Early Jurassic) extinction, a global multi-phased event. Palaeogeography, Palaeoclimatology, Palaeoecology 386, 104–18.CrossRefGoogle Scholar
Caswell, B. A. & Coe, A. L. 2012. A high-resolution shallow marine record of the Toarcian (Early Jurassic) Oceanic Anoxic Event from the East Midlands Shelf, UK. Palaeogeography, Palaeoclimatology, Palaeoecology 365–366, 124–35.Google Scholar
Caswell, B. A., Coe, A. L. & Cohen, A. S. 2009. New range data for marine invertebrate species across the Early Toarcian (Early Jurassic) mass extinction. Journal of the Geological Society, London 166, 859–72.Google Scholar
Cecca, F. & Macchioni, F. 2004. The two Early Toarcian (Early Jurassic) extinction events in ammonoids. Lethaia 37, 3556.Google Scholar
Channell, J. E. T., D’Argenio, B. & Horváth, F. 1979. Adria, the African promontory, in Mesozoic Mediterranean palaeogeography. Earth-Sciences Reviews 15, 213–92.Google Scholar
Chapuis, M. F. & Dewalque, M. G. 1853. Description des fossiles des terrains secondaires de la province de Luxembourg. Mémoires Couronnés et Mémoires des Savants Étrangers, Académie Royale de Belgique 25, 1302.Google Scholar
Chartron, C. & Cossmann, M. 1902. Note sur l’Infralias de la Vendée et spécialement sur un gisement situé dans la commune du Simon-la-Vineuse. Bulletin de la Société Géologique de France, 4éme série 2, 163203.Google Scholar
Conti, M. A. & Monari, S. 1991. Bivalve and gastropod fauna from the Liassic Ammonitico Rosso facies in the Bilecik area (western Pontides, Turkey). Geologica Romana 27, 245301.Google Scholar
Conti, M. A. & Monari, S. 1995. I gasteropodi giurassici dell’Appennino umbro-marchigiano (Italia centrale). In Biostratigrafia dell’Appennino Centrale (ed. Mancinelli, A.), pp.197215. Studi Geologici Camerti, volume speciale 1994.Google Scholar
Conti, M. A. & Monari, S. 2001. Middle Jurassic gastropods from the Central High Atlas (Morocco). Geobios 34, 183214.Google Scholar
Conti, M. A. & Monari, S. 2003. Jurassic Discohelicid gastropods from the Reatini Mountains (central Apennines, Italy) and their statigraphical significance. Geologica Romana 36, 199213.Google Scholar
Conti, M. A., Monari, S. & Szabó, J. 2007. Revisione: Gasteropodi. In Gaetano Giorgio Gemmellaro, sopra alcune faune giuresi e liasiche della Sicilia, seconda ristampa anastatica delle tavole con aggiornamento nomenclaturale dei taxa figurati di ammoniti, brachiopodi, gasteropodi e bivalvi (eds D’Arpa, C. & Scalone, E.), pl. 12. Palermo: Regione Siciliana.Google Scholar
Cossmann, M. 1894. Mollusques Gastéropodes. Annuaire Géologique Universelle, Revue de Géologie et Paléontologie 9, 741801.Google Scholar
Cossmann, M. 1906. Essais de Paléoconchologie comparée. Septieme Livraison. Paris: Chez l’auteur & F. R. de Rudeval, 261 pp.Google Scholar
Cossmann, M. 1908. Note sur un gisement d’âge Charmouthien à Saint-Cyr-en-Talmondois (Vendée). Bulletin de la Société Géologique de Normandie et des Amis du Muséum du Havre 27, 4565.Google Scholar
Cossmann, M. 1913. Contribution a la paléontologie française des terrains jurassiques. 3. Cerithiacea et Loxonematacea. Mémoires de la Société Géologique de France 19–20, 1263.Google Scholar
Cossmann, M. 1916. Étude complémentaire sur le Charmouthien de la Vendée. Bulletin de la Société Géologique de Normandie, Section Geologique 33, 113–59.Google Scholar
Cossmann, M. 1925 . Essais de Paléoconchologie comparée. Treizième Livraison. Paris: Les Presses Universitaires de France, Société Géologique de France, 345 pp.Google Scholar
Cossmann, M. & Abrard, R. 1921. Sur quelques gastropodes liasiques du Djebel Tselfat (Maroc). Bulletin de la Société Géologique de France, 4éme série 21, 152–8.Google Scholar
Cossmann, M. & Peyrot, A. 1919. Conchologie Néogénique de l’Aquitaine. Actes de la Société Linnéenne de Bordeaux 70, 181491.Google Scholar
Cox, L. R. 1956. A new genus of Mesozoic Pleurotomariidae. Proceedings of the Malacological Society of London 32, 79.Google Scholar
Cox, L. R. 1960. General characteristics of Gastropoda. In Treatise on Invertebrate Paleontology. Part I, Mollusca (eds Moore, R. C. & Pitrat, W.), pp. I84I169. Boulder (CO) and Lawrence (KS): Geological Society of America, Boulder, Colorado and University of Kansas Press.Google Scholar
Cox, L. R. 1969. Gastéropodes Jurassiques du sud-est Tunisien. Annales de Paléontologie (Invertébrés) 40, 243–68.Google Scholar
Dal Piaz, G. 1909. Nuovo giacimento fossilifero del Lias inferiore dei Sette Comuni (Vicentino). Mémoires de la Société Paléontologique Suisse 35, 110.Google Scholar
Danise, S., Twitchett, R. J., Little, C. T. S. & Clémence, M.-E. 2013. The impact of global warming and anoxia on marine benthic community dynamics: an example from the Toarcian (Early Jurassic). PLoS ONE 8, e56255.Google Scholar
Defrance, M. J. L. 1826. Genus Pleurotomaria . In Dictionnaire des sciences naturelles, dans lequel on traite méthodiquement des differens êtres de la nature, considérés soit en eux-mêmes d’après l’état actuel de nos connoissances, soit relativement à l’utilité qu’en peuvent retirer la medicine, l’agriculture, le commerce et les artes: suivi d’une biographie des plus célèbres naturalists, par plusieurs professeurs du Muséum National d’Histoire Naturelle et des autres principales de Écoles de Paris, Tome 41 (ed. Cuvier, G.), p. 381. Paris: Levrault.Google Scholar
Denckmann, A. 1887. Über die geognostischen Verhältnisse der Umgebung von Dornten nördlich Goslar mit besonderer Berücksichtigung der Fauna des oberen Lias. Abhandlungen zur Geologischen Specialkarte von Preussen und den Thüringischen Staaten 8, 1108.Google Scholar
Dera, G. & Donnadieu, Y. 2012. Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event. Paleoceanography 27, PA2211.Google Scholar
Dera, G., Neige, P., Dommergues, J.-P. & Brayard, A. 2011. Ammonite paleobiogeography during the Pliensbachian-Toarcian crisis (Early Jurassic) reflecting paleoclimate, eustasy, and extinctions. Global and Planetary Change 78, 92105.Google Scholar
Dera, G., Neige, P., Dommergues, J.-P., Fara, E., Laffont, R. & Pellenard, P. 2010. High-resolution dynamics of Early Jurassic marine extinctions: the case of Pliensbachian-Toarcian ammonites (Cephalopoda). Journal of the Geological Society, London 167, 2133.Google Scholar
Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Bi Ju-Duval, B., Brunet, M.-F., Cadet, J.-P., Crasquin, S. & Sandulescu, M. (eds) 2000. Atlas Peri-Tethys Palaeogeographical Maps. Paris: CCGM⁄CGMW, 269 pp, 24 maps.Google Scholar
Deshayes, G. P. 1831. Description de coquilles caractéristiques des terrains. Paris: Levrault, 262 pp.Google Scholar
Dumortier, E. 1857. Note sur quelques fossiles peu nonnus ou mal figurés du Lias moyen. Annales des Sciences Physiques et Naturelles, d’Agriculture et d’Industrie, 3éme série 1, 224–46.Google Scholar
Dumortier, E. 1869. Études Paléontologiques sur les Dépots Jurassiques du Bassin du Rhone. Troisiéme partie: Lias moyen. Paris: Savy, 348 pp.Google Scholar
Dumortier, E. 1874. Études Paléontologiques sur les Dépôts Jurassiques de Bassin du Rhone. Quatrième partie: Lias supérieur. Paris: Savy, 335 pp.Google Scholar
Ernst, W. 1923. Zur stratigraphie und fauna des Lias zeta im nordwestlichen Deutschland. Palaeontographica 65, 196.Google Scholar
Eudes-Deslongchamps, E. 1860. Note sur l’utilité de distraire des genres Turbo et Purpurina quelques coquilees des terrains jurassiques, et d’en former une nouvelle coupe générique sous le nom d’Eucyclus. Bulletin de la Société Linnéenne de Normandie 5, 138–48.Google Scholar
Eudes-Deslongchamps, J. C. A. 1842 a. Mémoire sur les Cérites fossiles des terrains secondaires du Calvados. Mémoires de la Société Linnéenne de Normandie 7, 189214.Google Scholar
Eudes-Deslongchamps, J. C. A. 1842 b. Mémoire sur les Melanies fossiles des terrains secondaires du Calvados. Mémoires de la Société Linnéenne de Normandie 7, 215–30.Google Scholar
Eudes-Deslongchamps, J. C. A. 1849. Mémoire sur les Pleurotomaires. Mémoires sur les fossiles des terrains secondaires du Calvados. Mémoires de la Société Linnéenne de Normandie 8, 1157.Google Scholar
Farinacci, A. & Elmi, S. (eds) 1981. Rosso Ammonitico Symposium Proceedings. Roma: Tecnoscienza, 602 pp.Google Scholar
Fischer, J.-C. & Weber, C. 1997. Révision Critique de la Paléontologie Française d’Alcide d’Orbigny (incluant la réédition de l’original). Volume II, Gastropodes Jurassiques. Paris: Muséum National d’Histoire Naturelle and Masson, 300 pp.Google Scholar
Fitton, W. H. 1836. Observations on the strata between the Chalk and the Oxford Oolite in the South-East of England. Transactions of the Geological Society of London, 2nd series 4, 103324.Google Scholar
Fleming, J. 1822. The Philosophy of Zoology; or, A General View of the Structure, Functions, and Classification of Animals. Edinburgh: A. Constable, 618 pp.Google Scholar
Fürsich, F. T., Berndt, R., Scheuer, T. & Gahr, M. 2001. Comparative ecological analysis of Toarcian (Lower Jurassic) benthic faunas from southern France and east central Spain. Lethaia 34, 169–99.Google Scholar
Gahr, M. E. 2002. Palökologie des Makrobenthos aus dem Unter-Toarc SW-Europas. Beringeria 31, 3204.Google Scholar
Gahr, M. E. 2005. Response of Lower Toarcian (Lower Jurassic) macrobenthos of the Iberian Peninsula to sea level changes and mass extinction. Journal of Iberian Geology 31, 197215.Google Scholar
Galácz, A. & Szabó, J. 2001. Toarcian gastropods from the Gerecse Mts (Hungary). Fragmenta Palaeontologica Hungarica 19, 1524.Google Scholar
García Joral, F., Gómez, J. J. & Goy, A. 2011. Mass extinction and recovery of the Early Toarcian (Early Jurassic) brachiopods linked to climate change in northern and central Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 302, 367–80.Google Scholar
Gatto, R. & Monari, S. 2010. Pliensbachian gastropods from Venetian Southern Alps (Italy) and their palaeobiogeographical significance. Palaeontology 53, 771802.Google Scholar
Gatto, R., Monari, S., Szabó, J. & Conti, M. A. 2013. The pleurotomarioidean gastropod genus Laevitomaria Conti and Szabó, 1987 in the Jurassic of western Tethys. Acta Palaeontologica Polonica, published online 25 July 2013. doi: http://dx.doi.org/10.4202/app.2013.0012.Google Scholar
Gemmellaro, G. G. 1874. Sopra i fossili della zona con Terebratula aspasia Menegh. della provincia di Palermo e di Trapani. Giornale di Scienze Naturali ed Economiche 10, 73132.Google Scholar
Gemmellaro, M. 1911. Sui fossili degli strati a Terebratula aspasia della Contrada Rocche Rosse presso Galati (prov. di Messina) (continuazione dell’opera omonima di G. G. Gemmellaro). Cefalopodi (fine), Gasteropodi. Giornale di Scienze Naturali ed Economiche 28, 203–47.Google Scholar
Giebel, C. 1866. Repertorium zu Goldfuss’ Petrefakten Deutschlands. Ein Verzeichniss aller Synonymen und literarischen Nachweise zu den von Goldfuss abgebildeten Arten. Leipzig: List & Francke, 122 pp.Google Scholar
Gill, B. C., Lyons, T. W. & Jenkyns, H. C. 2011. A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event. Earth and Planetary Science Letters 312, 484–96.Google Scholar
Goldfuss, A. 1841. Petrefacta Germaniae. Dritter Theil. Düsseldorf: Arnz & Comp., pp. 120.Google Scholar
Goldfuss, A. 1844. Petrefacta Germaniae. Dritter Theil. Düsseldorf: Arnz & Comp., pp. 21128.Google Scholar
Golonka, J. 2004. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 381, 235–73.Google Scholar
Golonka, J. 2007. Late Triassic and Early Jurassic palaeogeography of the world. Palaeogeography, Palaeoclimatology, Palaeoecology 244, 297307.Google Scholar
Goričan, Š., Carter, E. S., Guex, J., O’Dogherty, L., De Wever, P., Dumitrica, P., Hori, R. S., Matsuoka, A. & Whalen, P. A. 2013. Evolutionary patterns and palaeobiogeography of Pliensbachian and Toarcian (Early Jurassic) Radiolaria. Palaeogeography, Palaeoclimatology, Palaeoecology 386, 620–36.Google Scholar
Graciansky, P. C., Dardeau, G., Dommergues, J. L., Durlet, C., Marchand, D., Dumont, T., Hesselbo, S. P., Jacquin, T., Goggin, V., Meister, C., Mouterde, R., Rey, J. & Vail, P. 1998. Ammonite biostratigraphic correlation and early Jurassic sequence stratigraphy in France: comparisons with some UK sections. In Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (eds de Graciansky, P.-C., Hardenbol, J., Jacquin, T. & Vail, P. R.), pp. 583621. SEPM Special Publication no. 60.CrossRefGoogle Scholar
Grateloup, J. P. S. de. 1832. Description d’un genre nouveau de coquilles appelé Néritopside. Actes de la Société linnéenne de Bordeaux 5, 125–31.Google Scholar
Gray, J. E. 1847. A list of genera of Recent Mollusca, their synonyma and types. Proceedings of the Zoological Society of London 15, 129219.Google Scholar
Gründel, J. 1997. Zur Kenntnis einiger Gastropoden-Gattungen aus dem französischen Jura und allgemeine Bemerkungen zur Gastropodenfauna aus dem Dogger Mittel- und Westeuropas. Berliner Geowissenschaftliche Abhandlungen, Reihe E (Paläobiologie) 25, 69129.Google Scholar
Gründel, J. 1999 a. Procerithiidae (Gastropoda) aus dem Lias und Dogger Deutschlands und Polens. Freiberger Forschungshefte, Reihe C (Geowissenschaften) 481, 137.Google Scholar
Gründel, J. 1999 b. Truncatelloidea (Littorinimorpha, Gastropoda) aus dem Lias und Dogger Deutschlands und Nordpolens. Berliner Geowissenschaftliche Abhandlungen, Reihe E (Paläobiologie) 30, 89119.Google Scholar
Gründel, J. 2005. Zur Fassung und taxonomischen Stellung der Gattung Turritelloidea Walther, 1951 (Gastropoda, Heterostropha). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 6, 321–31.Google Scholar
Gründel, J. 2007. Gastropoden aus dem oberen Toarciurn/unteren Aalenium (Jura) von Norddeutschland. Paläontologische Zeitschrift 81, 238–53.Google Scholar
Gründel, J. 2009. Zur Taxonomie der Gattung Amphitrochus Cossmann, 1907 und Costatrochus n. gen. (Gastropoda, Vetigastropoda, Turbinidae) im Jura. Berliner Paläobiologische Abhandlungen 10, 199214.Google Scholar
Gründel, J. 2011 a. Ein ungewöhnlicher Gastropodenfund aus dem Pliensbachium (unterer Jura) Frankens. Geologische Blätter für Nordost-Bayern, 61, 8190.Google Scholar
Gründel, J. 2011 b. Die Ptychomphalidae Wenz, 1938 (Ptychomphaloidea, Gastropoda) im Jura. Freiberger Forschungshefte, Reihe C (Geowissenschaften) 539, 5969.Google Scholar
Gründel, J., Kaim, A., Nützel, A. & Little, C. T. 2011. Early Jurassic gastropods from England. Palaeontology 54, 481510.Google Scholar
Gründel, J. & Nützel, A. 1998. Gastropoden aus dem oberen Pliensbachium (Lias δ, Zone des Pleuroceras spinatum) von Kalchreuth östlich Erlangen. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie 38, 6396.Google Scholar
Gründel, J., Nützel, A. & Schulbert, C. 2009. Toarctocera (Gastropoda, Aporrhaidae): a new genus from the Jurassic (Toarcian/Aalenian) of South Germany and the early evolutionary history of the family Aporrhaidae. Paläontologische Zeitschrift 83, 533–43.Google Scholar
Guex, J. 1972. Répartition biostratigraphique des ammonites du Toarcien moyen de la bordure sud des Causses (France) et révision des ammonites décrites et figurées par Monestier (1931). Eclogae Geologicae Helvetiae 65, 611–45.Google Scholar
Hallam, A. 1987. Radiations and extinctions in relation to environmental change in the marine Jurassic of north west Europe. Paleobiology 13, 152–68.Google Scholar
Harazim, D., van de Schootbrugge, B., Sorichter, K., Fiebig, J., Weug, A., Suan, G. & Oschmann, W. 2013. Spatial variability of watermass conditions within the European Epicontinental Seaway during the Early Jurassic (Pliensbachian–Toarcian). Sedimentology 60, 359–90.Google Scholar
Harries, P. J. & Little, C. T. S. 1999. The early Toarcian (Early Jurassic) and the Cenomanian–Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeography, Palaeoclimatology, Palaeoecology 154, 3966.Google Scholar
Harris, G. F. 1897. Catalogue of Tertiary Mollusca in the Department of Geology, British Museum (Natural History). Part 1. The Australasian Tertiary Mollusca. London: Trustees of the British Museum (Natural History), 407 pp.Google Scholar
Hébert, M. & Eudes-Deslongchamps, E. 1860. Mémoire sur les fossiles de Montreuil-Bellay (Marne-et-Loire). 1re Partie. Céphalopodes et Gastéropodes. Bulletin de la Société Linnéenne de Normandie 5, 153240.Google Scholar
Hermoso, M., Minoletti, F., & Pellenard, P. 2013. Black shale deposition during Toarcian super-greenhouse driven by sea level. Climate of the Past 9, 2703–12.Google Scholar
Hermoso, M., Minoletti, F., Rickaby, R. E. M., Hesselbo, S. P., Baudin, F. & Jenkyns, H. C. 2012. Dynamics of a stepped carbon-isotope excursion: ultra high-resolution study of Early Toarcian environmental change. Earth and Planetary Science Letters 319–320, 4554.Google Scholar
Hesselbo, S. P., Gröcke, D. R., Jenkyns, H. C., Bjerrum, C. J., Farrimond, P., Morgans Bell, H. S. & Green, O. R. 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406, 392–5.Google Scholar
Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V. & Oliveira, L. C. V. 2007. Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth and Planetary Science Letters 253, 455–70.Google Scholar
Hörnes, M. 1855. Über die Gastropoden und Acephalen der Hallstätter Schichten. Denkschriften der keiserlichen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Classe 9, 3356.Google Scholar
Hudleston, W. H. 1888. A monograph of the British Jurassic Gasteropoda. Part 1, n. 2. Gasteropoda of the Inferior Oolite. Monograph of the Palaeontographical Society 41, 57136.Google Scholar
Hudleston, W. H. 1889. A monograph of the British Jurassic Gasteropoda. Part 1, n. 3. Gasteropoda of the Inferior Oolite. Monograph of the Palaeontographical Society 42, 137–92.Google Scholar
Hudleston, W. H. 1892. A monograph of the British Jurassic Gasteropoda. Part 1, n. 6. Gasteropoda of the Inferior Oolite. Monograph of the Palaeontographical Society 46, 273324.Google Scholar
Hudleston, W. H. 1894. A monograph of the British Jurassic Gasteropoda. Part 1, n. 7. Gasteropoda of the Inferior Oolite. Monograph of the Palaeontographical Society 48, 325–90.Google Scholar
Hudleston, W. H. 1895. A monograph of the British Jurassic Gasteropoda. Part 1, n. 8. Gasteropoda of the Inferior Oolite. Monograph of the Palaeontographical Society 49, 391444.Google Scholar
Hudleston, W. H. 1896. A monograph of the British Jurassic Gasteropoda. Part 1, n. 9. Gasteropoda of the Inferior Oolite. Monograph of the Palaeontographical Society 50, 445514.Google Scholar
International Commission on Zoological Nomenclature. 1999. International Code of Zoological Nomenclature. Fourth Edition Adopted by the International Union of Biological Sciences. London: International Trust for Zoological Nomenclature, 306 pp.Google Scholar
Jenkyns, H. C. 1988. The Early Toarcian (Jurassic) Anoxic Event. American Journal of Science 288, 101–51.Google Scholar
Jenkyns, H. C. 2010. Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems 11, Q03004.Google Scholar
Kaim, A. 2004. The evolution of conch ontogeny in Mesozoic open sea gastropods. Palaeontologia Polonica 62, 3183.Google Scholar
Klöcker, P. 1966. Faunistische und feinstratigraphische Untersuchungen an der Lias-Dogger-Grenze am Schönberg bei Freiburg i. Br. Berichte der Naturforschenden Gesellschaft Freiburg im Breisgau 56, 209–48.Google Scholar
Koch, F. C. L. & Dunker, W. 1837. Beiträge zur Kenntnis des Norddeutschen Oolithgebirges und dessen Versteinerungen. Braunschweig: Oehme und Müller, 64 pp.Google Scholar
Koken, E. 1892. Über die Gastropoden der rothen Schlernschichten nebst Bemerkungen über Verbreitung und Herkunft einiger triassischer Gattungen. Neues Jahrbuch für Mineralogie, Geologie und Palaontologie 1892, 2536.Google Scholar
Koken, E. 1896. Die Gastropoden der Trias um Hallstatt. Jahrbuch der Kaiserlich-Königlichen Geologischen Reichsanstalt 46, 37126.Google Scholar
Kuhn, O. 1935. Revision der Opalinuston (Dogger Alpha) Fauna in Franken, mit Ausschlusß der Cephalopoden. Palaeontologische Zeitschrift 17, 109–58.Google Scholar
Kuhn, O. 1936. Die Fauna des Amaltheentons (Lias δ) in Franken. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Abteilung B 75, 231311.Google Scholar
Lamarck, J.-B. de 1822. Histoire Naturelle des Animaux sans Vertèbres. Tome 7ème. Paris: Chez l’auteur, 711 pp.Google Scholar
Lézin, C., Andreu, B., Pellenard, P., Bouchez, J.-L., Emmanuel, L., Fauré, P. & Landrein, P. 2013. Geochemical disturbance and paleoenvironmental changes during the Early Toarcian in NW Europe, Chemical Geology 341, 115.Google Scholar
Lindström, A. & Peel, J. S. 2010. Shell repair and shell form in Jurassic pleurotomarioid gastropods from England. Bulletin of Geosciences 85, 541–50.Google Scholar
Little, C. T. S. & Benton, M. J. 1995. Early Jurassic mass extinction: a global long-term event. Geology 23, 495–8.2.3.CO;2>CrossRefGoogle Scholar
Mailliot, S., Mattioli, E., Bartolini, A., Baudin, F., Pittet, B. & Guex, J. 2009. Late Pliensbachian-Early Toarcian (Early Jurassic) environmental changes in an epicontinental basin of NW Europe (Causses area, central France): a micropaleontological and geochemical approach. Palaeogeography, Palaeoclimatology, Palaeoecology 273, 346–64.Google Scholar
Marino, M. & Santantonio, M. 2010. Understanding the geological record of carbonate platform drowning across rifted Tethyan margins: examples from the Lower Jurassic of the Apennines and Sicily (Italy). Sedimentary Geology 225, 116–37.Google Scholar
Mariotti, N. & Schiavinotto, F. 1977. Contribution to the paleontology of Toarcian “Rosso Ammonitico” in the Umbro-Marchigiana facies: foraminifers and non-ammonitiferous fauna from Monte La Pelosa (Polino, Terni). Geologica Romana 16, 285307.Google Scholar
McArthur, J. M., Algeo, T. J., van de Schootbrugge, B., Li, Q. & Howarth, R. J. 2008. Basinal restriction, black shales, Re-Os dating, and the Early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography 23, PA4217.Google Scholar
Meister, C. 1989. Les Ammonites du Domérien des Causses, France: Analyses Paléontologiques et Stratigraphiques. Cahiers de Paléontologie. Paris: Edition du CNRS, 80 pp.Google Scholar
Moberg, J. C. 1888. Om Lias i sydöstra Skåne. Sveriges Geologiska Undersökning, Serie C, Avhandlingar och uppsatser 99, 186.Google Scholar
Monari, S. & Gatto, R. 2013. Pleurotomaria Defrance, 1826 (Gastropoda, Mollusca) from the lower Bajocian (Middle Jurassic) sediments of Luxembourg, with considerations on its systematics, evolution and palaeobiogeographical history. Palaeontology 56, 751–81.Google Scholar
Monestier, J. 1921 a. Le Toarcien supérieur de la région Sud-Est de l’Aveyron. Bulletin de la Société Géologique de France, 4éme série 20, 280312.Google Scholar
Monestier, J. 1921 b. Ammonites rares ou peu connues et ammonites nouvelles du Toarcien supérieur du Sud-Est de l’Aveyron. Mémoires de la Société Géologique de France 23, 144.Google Scholar
Monestier, J. 1931. Ammonites rares ou peu connues et ammonites nouvelles du Toarcien moyen de la région Sud-Est de l’Aveyron. Mémoires de la Société Géologique de France, Nouvelle Série 7, 179.Google Scholar
Moore, C. 1866. On the Middle and Upper Lias of the south west of England. Somersetshire Archaeological and Natural History Society, Proceedings 13, 119245.Google Scholar
Morris, J. & Lycett, J. 1851. The Mollusca of the Great Oolite, Part I, Univalves Part 1. Monograph of the Palaeontographical Society 4, 1130.Google Scholar
Nairn, A. E. M., Ricou, L.-E., Vrielynck, B. & Dercourt, J. (eds) 1996. The Oceans Basins and Margins. Volume 8. The Tethys Ocean. New York: Plenum Press, 530 pp.Google Scholar
Neige, P., Dera, G. & Dommergues, J.-L. 2013. Adaptive radiation in the fossil record: a case study among Jurassic ammonoids. Palaeontology 56, 1247–61.Google Scholar
Nützel, A. 2008. Leben am Meeresboden. Über die Fauna des fränkischen Amaltheentons. Freunde der Bayerischen Staatssammlung für Paläontologie und Historische Geologie München e.V., Jahresbericht 2007 und Mitteilungen 36, 4261.Google Scholar
Nützel, A. & Kiessling, W. 1997. Gastropoden aus dem Amaltheenton (oberes Pliensbachium) von Kalchreuth. Geologische Blätter für Nordost-Bayern 47, 381414.Google Scholar
Oppel, A. 1854. Der mittlere Lias Schwabens. Jahreshefte des Vereins für Vaterländische Naturkunde in Württemberg 10, 39136.Google Scholar
Oppel, A. 18561858. Die Juraformation Englands, Frankreichs und des Südwestlichen Deutschlands. Stuttgart: Verlag von Ebner & Seubert, 857 pp.Google Scholar
Orbigny, A. d’. 1850. Prodrome de Paléontologie Stratigraphique Universelle des Animaux Mollusques et Rayonnés, faisant suite au Cours Élémentaire de Paléontologie et de Géologie Stratigraphiques. Vol. 1. Paris: Masson, lx + 394 pp.Google Scholar
Orbigny, A. d’. 1851. Paléontologie Française. Terrains Jurassiques. Tome 2, contenant les gastéropodes. Livr. 64–70. Paris: Masson, pp. 1112.Google Scholar
Orbigny, A. d’. 1852. Paléontologie Française. Terrains Jurassiques. Tome 2, contenant les gastéropodes. Livr. 71–79. Paris: Masson, pp. 113232.Google Scholar
Orbigny, A. d’. 1853. Paléontologie Française. Terrains Jurassiques. Tome 2, contenant les gastéropodes. Livr. 80–89. Paris: Masson, pp. 233384.Google Scholar
Orbigny, A. d’. 1854. Paléontologie Française. Terrains Jurassiques. Tome 2, contenant les gastéropodes. Livr. 90–94. Paris: Masson, pp. 385424.Google Scholar
Orbigny, A. d’. 1855. Paléontologie Française. Terrains Jurassiques. Tome 2, contenant les gastéropodes. Livr. 95–101. Paris: Masson, pp. 425–80.Google Scholar
Page, K. N. 2003. The Lower Jurassic of Europe: its subdivision and correlation. Geological Survey of Denmark and Greenland Bulletin 1, 2359.Google Scholar
Parona, C. F. 1894. I gasteropodi del Lias inferiore di Saltrio in Lombardia. Bollettino della Società Malacologica Italiana 18, 161–84.Google Scholar
Pčelincev, V. F. 1937. The Jurassic Gastropoda and Pelecypoda of the USSR. 1. The Gastropoda and Pelecypoda from the Liassic and Lower Dogger of the Tetis in the limits of the USSR (the Crimea and Caucasus). Monographs on the Paleontology of the USSR 48, 184 [in Russian with extended English summary].Google Scholar
Pearce, C. R., Cohen, A. S., Coe, A. L. & Burton, K. W. 2008. Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic. Geology 36, 231–4.Google Scholar
Phillips, J. 1829. Illustrations of the Geology of Yorkshire; or a Description of the Strata and Organic Remains of the Yorkshire Coast. York: Thomas Wilson and Sons, 192 pp.Google Scholar
Pinard, J.-D., Weis, R., Neige, P., Mariotti, N., & Di Cencio, A. 2014. Belemnites from the Upper Pliensbachian and the Toarcian (Lower Jurassic) of Tournadous (Causses, France). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 273, 155–77.CrossRefGoogle Scholar
Quenstedt, F. A. von 1843. Das Flözgebirge Würtembergs. Mit besonderer Rücksicht auf den Jura. Tübingen: Laupp, 558 pp.Google Scholar
Quenstedt, F. A. von. 1852. Handbuch der Petrefaktenkunde. Tübingen: Laupp, 792 pp.Google Scholar
Quenstedt, F. A. von. 1856. Der Jura. Lief. 1–2. Tübingen: Laupp, pp. 1368.Google Scholar
Quenstedt, F. A. von. 1882. Petrefaktenkunde Deutschlands. Erste Abteilung, Band 7: Gastropoden. Lief. 2–3. Leipzig: Fues, pp. 193464.Google Scholar
Quenstedt, F. A. von. 1883. Petrefaktenkunde Deutschlands. Erste Abteilung, Band 7: Gastropoden. Lief. 4. Leipzig: Fues, pp. 465592.Google Scholar
Rafinesque, C. S. 1815. Analyse de la Nature, ou Tableau de l’Univers et des Corps Organisées. Palermo: Barraveccia, 223 pp.Google Scholar
Roemer, A. F. 1836. Die Versteinerungen des Norddeutschen Oolithen-Gebirges. Hannover: Hahn, 218 pp.Google Scholar
Roemer, A. F. 1839. Die Versteinerungen des Norddeutschen Oolithen-Gebirges. Ein Nachtrag. Hannover: Hahn, 59 pp.Google Scholar
Röhl, H., Schmid-Röhl, A., Oschmann, W., Frimmel, A. & Schwark, L. 2001. The Posidonia Shale (lower Toarcian) of SW-Germany; an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 165, 2752.Google Scholar
Rollier, L. 1918. Fossiles nouveaux ou peu connus des terrains secondaires (Mésozoïque) du Jura et des contrées environnantes. Tome II, 1er Partie. Mémoire de la Société Paléontologique Suisse 43, 172.Google Scholar
Sacchi Vialli, G. 1964. Revisione della fauna di Saltrio. V: I Gasteropodi. I Cefalopodi Dibranchiati. I Briozoi. I Brachiopodi. Gli Echinodermi. I Vertebrati. Atti dell’Istituto di Geologia dell’Università di Pavia 15, 311.Google Scholar
Santantonio, M. & Carminati, E. 2011. Jurassic rifting evolution of the Apennines and Southern Alps (Italy): parallels and differences. Geological Society of America Bulletin 123, 468–84.Google Scholar
Schlosser, M. 1901. Die Fauna des Lias und Dogger in Franken und der Oberpfalz. Zeitschrift der Deutschen Geologischen Gesellschaft 53, 513–69.Google Scholar
Schmidt, F. A. 1846 Petrefacten-Buch oder allgemeine und besondere Versteinerungskunde, mit Berücksichtigung der Lagerungsverhältnisse, besonders in Deutschland. Stuttgart: Hoffmann, 174 pp.Google Scholar
Schubert, S., Gründel, J. & Nützel, A. 2008. Early Jurassic (Upper Pliensbachian) gastropods from the Herforder Liasmulde (Bielefeld, Northwest Germany). Paläontologische Zeitschrift 82, 1730.Google Scholar
Schulbert, C. & Nützel, A. 2009. Über die Jurassische Gastropodenfauna der Tongrube Mistelgau bei Bayreuth. Berichte der Naturwissenschaftlichen Gesellschaft Bayreuth 26, 475–99.Google Scholar
Schulbert, C. & Nützel, A. 2013. Gastropods from the Early/Middle Jurassic transition of Franconia (Southern Germany). Bulletin of Geosciences 88, 723–78.Google Scholar
Sieberer, K. 1907. Die Pleurotomarien des schwäbischen Jura. Palaeontographica 54, 168.Google Scholar
Sowerby, J. 1818. The Mineral Conchology of Great Britain, or Coloured Figures and Descriptions of those Remains of Testaceous Animals or Shells, Which Have Been Preserved at Various Times and Depths in the Earth. Volume 2. Part 34. London: Arding, pp. 211–24.Google Scholar
Sowerby, J. 1821 a. The Mineral Conchology of Great Britain, or coloured figures and descriptions of those remains of testaceous animals or shells, which have been preserved at various times and depths in the Earth. Volume 3. Part 48. London: Arding, pp. 127–38.Google Scholar
Sowerby, J. 1821 b. The Mineral Conchology of Great Britain, or coloured figures and descriptions of those remains of testaceous animals or shells, which have been preserved at various times and depths in the Earth. Volume 3. Part 50. London: Arding, pp. 151–62.Google Scholar
Stoliczka, F. 1861. Über die Gastropoden und Acephalen der Hierlatz-Schichsten. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe 43, 157204.Google Scholar
Suan, G., Mattioli, E., Pittet, B., Mailliot, S. & Lécuyer, C. 2008. Evidence for major environmental perturbation prior to and during the Toarcian (Early Jurassic) oceanic anoxic event from the Lusitanian Basin, Portugal. Paleoceanography 23, PA1202.Google Scholar
Swainson, W. 1840. A Treatise on Malacology or Shells and Shell-fish. London: Longman, Orme, Brown, Green & Longmans and John Taylor, 419 pp.Google Scholar
Szabó, J. 1980. Lower and Middle Jurassic gastropods from the Bakony Montains (Hungary). Part 2. Pleurotomariacea and Fissurellacea (Archaeogastropoda). Annales Historico-Naturales Musei Nationalis Hungarici 72, 4971.Google Scholar
Szabó, J. 1982. Lower and Middle Jurassic gastropods from the Bakony Mountains. Part IV: Neritacea, Craspedostomatacea, Amberleyacea (Archaeogastropoda). Annales Historico-Naturales Musei Nationalis Hungarici 74, 1733.Google Scholar
Szabó, J. 1995. Eucyclidae (Eucycloidea, Gastropoda) as a Liassic palaeoecological index in the Transdanubian Central Range (Hungary). Hantkeniana 1, 6774.Google Scholar
Szabó, J. 2009. Gastropods of the Early Jurassic Hierlatz Limestone Formation; part 1: a revision of the type collections from Austrian and Hungarian localities. Fragmenta Palaeontologica Hungarica 26, 1108.Google Scholar
Tate, R. 1869. Contributions to Jurassic Palaeontology. 1. Cryptaulax, a new Genus of Cerithiadae. The Annals and Magazine of Natural History, 4th series 4, 417–19.Google Scholar
Tate, R. & Blake, I. F. 1876. The Yorkshire Lias. London: Van Voorst, 475 pp.Google Scholar
Thevenin, A. 1908. Types du Prodrome de Paléontologie stratigraphique universelle de d’Orbigny (suite). Annales de Paléontologie 3, 189200.Google Scholar
Thierry, J. 2000. Middle Toarcian (180–178 MA). In Atlas Peri-Tethys Palaeogeographical Maps. Explanatory Notes. (eds Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Ju-Duval, B. Bi, Brunet, M.-F., Cadet, J.-P., Crasquin, S. & Sandulescu, M.), pp. 5870. Paris: CCGM/CGMW.Google Scholar
Trauth, F. 1908. Ueber den Lias der exotischen Klippen am Vierwaldstätter See. Mitteilungen der geologischen Gesellschaft in Wien 1, 413–85.Google Scholar
Trümpy, D. M. 1983. Le Lias Moyen et Supérieur des Grands Causses et de la région de Rodez: contributions stratigraphiques, sédimentologiques et géochimiques à la connaissance d’un bassin à sédimentation marneuse. Cahiers de l’Université, Université de Pau et des Pays de l’Adour 19, 1363.Google Scholar
van de Schootbrugge, B., Bachan, A., Suan, G., Richoz, S. & Payne, J. L. 2013. Microbes, mud and methane: cause and consequence of recurrent early Jurassic anoxia following the end-triassic mass extinction. Palaeontology 56, 685709.Google Scholar
van de Schootbrugge, B., Bailey, T., Rosenthal, Y., Katz, M., Wright, J. D., Feist-Burkhardt, S., Miller, K. G. & Falkowski, P. G. 2005. Early Jurassic climate change and the radiation of organic-walled phytoplankton in the Tethys Ocean. Paleobiology 31, 7397.Google Scholar
Vörös, A. 2002. Victims of the Early Toarcian anoxic event: the radiation and extinction of Jurassic Koninckinidae (Brachiopoda). Lethaia 35, 345–57.Google Scholar
Walther, H. 1951. Jurassische Mikrofossilien, insbesondere Gastropoden, am Südrand des Hils. Paläontologische Zeitschrift 25, 35106.Google Scholar
Wendt, J. 1968. Discohelix (Archaeogastropoda, Euomphalacea) as an index fossil in the Tethyan Jurassic. Palaeontology 11, 554–75.Google Scholar
Wenz, W. 1938. Gastropoda. Teil 1: Allgemeiner Teil und Prosobranchia. In Handbuch der Paläozoologie, Band 6. Lief. 1–3 (ed. Schindewolf, O. D.), pp. 1480. Berlin: Borntraeger.Google Scholar
Wignall, P. B., Newton, R. J. & Little, C. T. S. 2005. The timing of paleoenvironmental change and cause-and-effect relationships during the Early Jurassic mass extinction in Europe. American Journal of Science 305, 1014–32.CrossRefGoogle Scholar
Wilson, E. 1887. British Liassic Gasteropoda. Geological Magazine 4, 194202.Google Scholar
Wilson, E. & Crick, W. D. 1889. The Lias marlstone of Tilton, Leicestershire. Geological Magazine 6, 296305.Google Scholar
Winterer, E. L. & Bosellini, A. 1981. Subsidence and sedimentation on Jurassic passive continental margin, Southern Alps, Italy. AAPG Bulletin 65, 394421.Google Scholar
Ziegler, P. A. 1988. Evolution of the Arctic-North Atlantic and the western Tethys. AAPG Memoirs 43, 1198.Google Scholar
Ziegler, P. A. & Horváth, F. (eds) 1996. Peri-Tethys Memoir 2. Structure and prospects of Alpine basins and forelands. Mémoires du Muséum National d’Histoire Naturelle 170, 1547.Google Scholar
Zieten, C. H. von. 1832. Die Versteinerungen Württembergs oder naturgetreue Abbildungen der in den vollständigsten Sammlungen, namentlich der in dem Kabinett des Oberamts-Arzt D. Hartmann befindlichen Petrefacten, mit Angabe der Gebirgs-Formationen, in welchen dieselben vorkommen und der Fundorte. Hefte 5–8. Stuttgart: Verlag & Lithographie der Expedition des Werkes unserer Zeit, pp. 3364.Google Scholar