Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T02:41:02.656Z Has data issue: false hasContentIssue false

Garnet and associated minerals in the southern margin of the Menderes Massif, southwest Turkey

Published online by Cambridge University Press:  01 May 2009

J. R. Ashworth
Affiliation:
Department of Geological Sciences, University of Aston in Birmingham, Gosta Green, Birmingham B4 7ET, U.K.
M. M. Evirgen
Affiliation:
Hidrojeoloji Mühendisliği Bölümü, Mühendislik Fakültesi, Hacettepe Üniversitesi, Beytepe Kampüsü

Abstract

Assemblages with muscovite + quartz show a regular increase in grade from the Chlorite Zone at the base of the Lycian Nappe Complex to the Garnet Zone within the structurally underlying Menderes Massif. Biotite enters before garnet, which precedes oligoclase. Garnet-bearing assemblages in pelites are compared with those in re-equilibrated quartzofeldspathic gneisses, where garnet is unusually calcic (in one case approaching Gross50 Alm50). Local retrograde effects are noted but no evidence is found for a polymetamorphic record in the mineral compositions. Garnet zoning, with Mn decreasing outwards, is interpreted as growth zoning; Ca decreases outwards in pelite garnets but shows the reverse effect in the gneisses. Chloritoid is common but rarely coexists with biotite, and garnet + chlorite + paragonite is found rather than chloritoid + albite. Garnet-biotite geothermometry, corrected for the effect of Ca in garnets with up to 29 mole % grossular, indicates temperatures of 530±5O°C near the garnet isograd. As in other areas, an attempt at muscovite-paragonite geothermometry gives an anomalous result. Metamorphic pressure isconsidered in the light of (i) Mn/Fe partition between garnet and biotite, (ii) Ca content of garnet coexisting with plagioclase + muscovite + biotite, (iii) Na in actinolite coexisting with albite + chlorite + magnetite, and (iv) celadonite content of muscovite which, however, shows variation due to disequilibrium within a specimen and does not provide an accurate geobarometer. Comparisons with published studies indicate a strong similarity to the Barrovian Dalradian of Scotland and lead to a tentative pressure estimate of approximately 5 kbar.

Type
Articles
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albee, A. L., Bingham, E., Chodos, A. A., & Maynes, A. D., 1965. Phase equilibria in three assemblages of kyanite-zone pelitic schists, Lincoln Mountain Quadrangle, central Vermont. Journal of Petrology 6, 246301.CrossRefGoogle Scholar
Asami, M., & Hoshino, M., 1980. Staurolite-bearing schists from the Hongu-san area in the Ryoke metamorphic belt, central Japan. Journal of the Geological Society of Japan 86, 581–91.Google Scholar
Ashworth, J. R., & Evirgen, M. M., 1984. Mineral chemistry of regional chloritoid assemblages in the Chlorite Zone, Lycian Nappes, SW Turkey. Mineralogical Magazine (submitted).CrossRefGoogle Scholar
Baltatzis, E., & Wood, B. J., 1977. The occurrence of paragonite in chloritoid schists from Stonehaven, Scotland. Mineralogical Magazine 41, 211–16.CrossRefGoogle Scholar
Brinkmann, R., 1976. Geology of Turkey. Amsterdam: Elsevier. 158 pp.Google Scholar
Brown, E. H., 1977. The crossite content of Ca-amphibole as a guide to pressure of metamorphism. Journal of Petrology 18, 5372.CrossRefGoogle Scholar
Çağlayan, M. A., Öztürk, E. M., Öztürk, Z., Sav, H., & Akat, U., 1980. Menderes masifi güneyine ait bulgular ve yapisal yorum (with English abstract). Jeoloji Mühendisliĝi 10, 917.Google Scholar
Chatterjee, N. D., & Froese, E., 1975. A thermodynamic study of the pseudobinary join muscovite-paragonite in the system KAlSi3O8—NaAlSi3O8—Al2O3—SiO2—H2O. American Mineralogist 60, 985–93.Google Scholar
Chinner, G. A., 1960. Pelitic gneisses with varying ferrous/ferric ratios from Glen Clova, Angus, Scotland. Journal of Petrology 1, 178217.CrossRefGoogle Scholar
Chinner, G. A., 1967. Chloritoid and the isochemical nature of Barrow's zones. Journal of Petrology 8, 268–82.CrossRefGoogle Scholar
Cressey, G., 1978. Exsolution in almandine-pyrope-grossular garnet. Nature 271, 533–4.CrossRefGoogle Scholar
Cressey, G., Schmid, R., & Wood, B. J., 1978. Thermodynamic properties of almandine-grossular garnet solid solutions. Contributions to Mineralogy and Petrology 67, 397404.CrossRefGoogle Scholar
De Graciansky, P., 1966. Le massif cristallin du Menderes (Taurus Occidental. Asie Mineure). Un exemple possible de vieux socle granitique remobilisé. Revue de Géographie Physique et de Géologie Dynamique 8, 289306.Google Scholar
Dora, O. Ö., 1976. Die Feldspáte als petrogenetischer Indikator im Menderes-Massiv/Westanatolien. Neues Jahrbuch für Mineralogie Abhandlungen 127, 289310.Google Scholar
Dora, O. Ö, 1981. Petrologie und Feldspatuntersuchungen im Menderes-Massiv/Westanatolien Bulletin de Minéralogie 104, 776–84.CrossRefGoogle Scholar
Durr, ST., Altherr, R., Keller, J., Okrusch, M., & Seidel, E., 1978. The Median Aegean Crystalline Belt. In Alps, Appenines, Hellenides (ed. Cloos, H., D., Roeder and K., Schmidt), pp. 455–77. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung.Google Scholar
Eugster, H. P., Albee, A. L., Bence, A. E., Thompson, J. B. Jr., & Waldbaum, D. R., 1972. The two-phase region and excess mixing properties of paragonitemuscovite crystalline solutions. Journal of Petrology 13, 147–79.CrossRefGoogle Scholar
Evirgen, M. M., & Ataman, G., 1981. Menderes Masifinin merkezi bölgesinin metamorfizmasinin incelenmesi: izograd, basinç ve sicakhk (with English summary). Yerbilimleri, 7 1526.Google Scholar
Evirgen, M. M., & Ataman, G., 1982. Étude du métamorphisme de la zone centrale du Massif due Menderes. Isogrades, pressions et température. Bulletin de la Société Géologique de France 24, 309–19.CrossRefGoogle Scholar
Ferry, J. M., 1980. A comparative study of geothermometers and geobarometers in pelitic schists from south-central Maine. American Mineralogist 65, 720–32.Google Scholar
Ferry, J. M., & Spear, F. S., 1978. Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contributions to Mineralogy and Petrology 66, 113–17.CrossRefGoogle Scholar
Fletcher, C. J. N., & Greenwood, H. J., 1979. Metamorphism and structure of Penfold Creek area, near Quesnel Lake, British Columbia. Journal of Petrology 20,743–94.CrossRefGoogle Scholar
Ghent, E. D., & Stout, M. Z., 1981. Geobarometry and geothermometry of plagioclase-biotite-garnet-muscovite assemblages. Contributions to Mineralogy and Petrology 76, 92–7.CrossRefGoogle Scholar
Guidotti, C. V., & Sassi, F. P., 1976. Muscovite as a petrogenetic indicator mineral in pelitic schists. Neues Jahrbuch für Mineralogie Abhandlungen 127, 97142.Google Scholar
Gutnic, M., Monod, O., Poisson, A., & Dumont, J., 1979. Géologiedes Taurides Occiden tales (Turquie). Mémoires de la Société Géologique de France 137. 112 pp.Google Scholar
Harte, B., & Hudson, N. F. C., 1979. Pelite facies series and the temperatures and pressures of Dalradian metamorphism in E. Scotland. In The Caledonides of the British Isles — Reviewed (ed. Harris, A. L., Holland, C. H. and Leake, B. E.), pp. 323–37. Geological Society of London Special Publication 8.Google Scholar
Henjes-Kunst, F., ↦ Kreuzer, H., 1982. Isotopic dating of Pre-Alpidic rocks from the island of Ios (Cyclades, Greece). Contributions to Mineralogy and Petrology 80, 243–53.CrossRefGoogle Scholar
Hodges, K. V., & Spear, F. S., 1982. Geothermometry, geobarometry and the Al2Si06 triple point at Mt. Moosilauke, New Hampshire. American Mineralogist 67, 1118–34.Google Scholar
Hudson, N. F. C., 1980. Regional metamorphism of some Dalradian pelites in the Buchan area, N. E. Scotland. Contributions to Mineralogy and Petrology 73, 3951.CrossRefGoogle Scholar
Jansen, J. B. H., & Schuiling, R. D., 1976. Metamorphism on Naxos: petrology and geothermal gradients. American Journal of Science 276, 1225–53.CrossRefGoogle Scholar
Katagas, C. G., 1980. Metamorphic zones and physical conditions of metamorphism in Leros island, Greece. Contributions to Mineralogy and Petrology 73, 389402.CrossRefGoogle Scholar
Miyashiro, A., 1953. Calcium-poor garnet in relation to metamorphism. Geochimica el Cosmochimica Acta 4, 179208.CrossRefGoogle Scholar
Novak, J. M., & Holdaway, M. J., 1981. Metamorphic petrology, mineral equilibria and polymetamorphism in the Augusta Quadrangle, south central Maine. American Mineralogist 66, 5169.Google Scholar
Önay, T. S., 1949. Öberdie Smirgelgesteine SW-Anatoliens. Schweizerische Mineralogische und Petrographische Mitteilungen 29, 357491.Google Scholar
Richardson, S. W., & Powell, R., 1976. Thermal causes of Dalradian metamorphism in the central Highlands of Scotland. Scottish Journal of Geology 12, 237–68.CrossRefGoogle Scholar
Schuiling, R. D., 1962. On petrology, age and structure of the Menderes migmatite complex. Bulletin. Mineral Research and Exploration Institute, Ankara 58, 7184.Google Scholar
Şengör, A. M. C., & Yilmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75, 181241.CrossRefGoogle Scholar
Sivaprakash, C., 1982. Geothermometry and geobarometry of Dalradian metapelites and metabasites from the central Scottish Highlands. Scottish Journal of Geology 18, 109–24.CrossRefGoogle Scholar
Thompson, A. B., 1976. Mineral reactions in pelitic rocks: II. Calculation of some P—T—X (Fe—Mg) phase relations. American Journal of Science 276, 401–54.CrossRefGoogle Scholar
Tracy, R. J., Robinson, P., & Thompson, A. B., 1976. Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts. American Mineralogist 61, 762–75.Google Scholar
Whitney, J. A., & Stormer, J. C. Jr., 1977. The distribution of NaAlSi3O8 between coexisting microcline and plagioclase and its effect on geothermometric calculations. American Mineralogist 62, 687–91.Google Scholar
Winkler, H. G. F., 1979. Petrogenesis of Metamorphic Rocks, 5th ed. New York: Springer-Verlag. 348 pp.CrossRefGoogle Scholar