Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T22:29:42.646Z Has data issue: false hasContentIssue false

A fistful of shells: amplifying sclerochronological and palaeoclimate signals from molluscan death assemblages

Published online by Cambridge University Press:  15 July 2009

S. HELAMA*
Affiliation:
Department of Geology, P.O. Box 64, 00014 University of Helsinki, Finland
J. K. NIELSEN
Affiliation:
StatoilHydro, TNE SST Reservoir Technology, IOR Studies, P.O. Box 273, 7501 Stjørdal, Norway
M. MACIAS FAURIA
Affiliation:
Biogeoscience Institute, 2500 University Drive N.W., University of Calgary, Calgary AB, T2N 1N4, Canada
I. VALOVIRTA
Affiliation:
Finnish Museum of Natural History, P.O. Box 17, 00014 University of Helsinki, Finland
*
Author for correspondence: [email protected]

Abstract

A growing body of literature is using sclerochronological information to infer past climates. Sclerochronologies are based on series of skeletal growth records of molluscs that have been correctly aligned in time. Incremental series are obtained from a number of shells to assess the temporal control and improve the climate signal in the final chronology. Much of the sclerochronological theory has been adopted from tree-ring science, due to the longer tradition and more firmly established concepts of chronology construction in dendrochronology. Compared to tree-ring studies, however, sclerochronological datasets are often characterized by relatively small sample size. Here we evaluate how effectively palaeoclimatic signal can be extracted from such a suite of samples. In so doing, the influences of the very basic methods that are applied in nearly every sclerochronological study to remove the non-climatic growth variability prior to palaeoclimatic interpretations, are ranked by their capability to amplify the desired signal. The study is performed in the context of six shells that constitute a bicentennial growth record from annual shell increments of freshwater pearl mussel. It was shown that when the individual series were detrended using the models set by the mean or the median summary curves for ageing (that is, applying Regional Curve Standardization, RCS), instead of fitting the ageing mode statistically to each series, the resulting sclerochronology displayed more low-frequency variability. Consistently, the added low-frequency variability evoked higher proxy–climate correlations. These results show the particular benefit of using the RCS method to develop sclerochronologies and preserve their low-frequency variations. Moreover, calculating the ageing curve and the final chronology by median, instead of mean, resulted in an amplified low-frequency climate signal. The results help to answer a growing need to better understand the behaviour of the sclerochronological data. In addition, we discuss the pitfalls that may potentially disrupt palaeoclimate signal detection in similar sclerochronological studies. Pitfalls may arise from shell taphonomy, water chemistry, time-variant characters of biological growth trends and small sample size.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bar-Yosef Mayer, D. E. 2005. An Introduction to Archaeomalacology. In Archaeomalacology: Molluscs in Former Environments of Human Behaviour (ed. Bar-Yosef Mayer, D. E.), pp. 14. Oxford: Oxbow Books.Google Scholar
Bauer, G. 1992. Variation in the life span and size of the freshwater pearl mussel. Journal of Animal Ecology 61, 425–36.CrossRefGoogle Scholar
Björk, S. 1962. Investigations on Margaritifera margaritifera and Unio crassus. Limnologic studies in rivers in South Sweden. Acta Limnologica 4, 1109.Google Scholar
Black, B. A., Boehlert, G. W. & Yoklavich, M. M. 2005. Using tree-ring crossdating techniques to validate annual growth increments in long-lived fishes. Canadian Journal of Fisheries and Aquatic Sciences 62, 2277–84.CrossRefGoogle Scholar
Brander, T. 1956. Helmenpyynnistä ja helmien taloudellisesta merkityksestä Suomessa. Luonnon tutkija 60, 710.Google Scholar
Briffa, K. R. & Jones, P. D. 1990. Basic chronology statistics and assessment. In Methods of dendrochronology: applications in the environmental sciences (eds Cook, E. R. & Kairiukstis, L.), pp. 137–52. Dordrecht: Kluwer Academic Publishers.Google Scholar
Briffa, K. R., Jones, P. D., Bartholin, T. S., Eckstein, D., Schweingruber, F. H., Karlén, W., Zetterberg, P. & Eronen, M. 1992. Fennoscandian summers from AD 500: temperature changes on short and long timescales. Climate Dynamics 7, 111–19.CrossRefGoogle Scholar
Briffa, K. R., Jones, P. D., Schweingruber, F. H., Karlén, W. & Shiyatov, S. G. 1996. Tree-ring variables as proxy-indicators: Problems with low-frequency signals. In Climatic Variations and Forcing Mechanisms of the Last 2000 Years (eds Jones, P. D., Bradley, R. S. & Jouzel, J.), pp. 9–41. NATO ASI Series I41.Google Scholar
Carell, B., Dunca, E., Gärdenfors, U., Kukakowski, E., Lindh, U., Mutvei, H., Nyström, J., Seire, A., Slepukhina, T., Timm, H., Westermark, T. & Ziuganov, V. 1995. Biomonitoring of pollutants in a historic perspective. Emphasis on mussel and snail shell methodology. Annali di Chimica 85, 353–70.Google Scholar
Collins, M., Osborn, T. J., Tett, S. F. B., Briffa, K. R. & Schweingruber, F. H. 2002. A comparison of the variability of a climate model with paleotemperature estimates from a network of tree-ring densities. Journal of Climate 15, 14971515.2.0.CO;2>CrossRefGoogle Scholar
Compere, E. L. & Bates, J. M. 1973. Determination of calcite:aragonite ratios in mollusc shells by infrared spectra. Limnology and Oceanography 18, 326–31.CrossRefGoogle Scholar
Cook, E. R. & Briffa, K. R. 1990. A comparison of some tree-ring standardization methods. In Methods of dendrochronology: applications in the environmental sciences (eds Cook, E. R. & Kairiukstis, L.), pp. 153–62. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Cook, E. R., Briffa, K. R., Meko, D. M., Graybill, D. S. & Funkhouser, G. 1995. The ‘segment length curse’ in long tree-ring chronology development for paleoclimatic studies. The Holocene 5, 229–37.CrossRefGoogle Scholar
Cook, E. R., Briffa, K. R., Shiyatov, S. & Mazepa, V. 1990. Tree-ring standardization and growth-trend estimation. In Methods of dendrochronology: applications in the environmental sciences (eds Cook, E. R. & Kairiukstis, L.), pp. 104–23. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Cook, E. R. & Peters, K. 1981. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulletin 41, 4553.Google Scholar
Cook, E. R., Shiyatov, S. & Mazepa, V. 1990. Estimation of the Mean Chronology. In Methods of dendrochronology: applications in the environmental sciences (eds Cook, E. R. & Kairiukstis, L.), pp. 123–32. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Cummins, R. H. 1994. Taphonomic processes in modern freshwater molluscan death assemblages: Implications for the freshwater fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology 108, 5573.CrossRefGoogle Scholar
Douglass, A. E. 1920. Evidence of climatic effects in the annual rings of trees. Ecology 1, 2432.CrossRefGoogle Scholar
Douglass, A. E. 1936. The central Pueblo chronology. Tree-Ring Bulletin 2, 2934.Google Scholar
Douglass, A. E. 1941. Crossdating in dendrochronology. Journal of Forestry 39, 825–31.Google Scholar
Dunca, E. 1999. Bivalve shells as archives for changes in water environment. Vatten 55, 279–90.Google Scholar
Dunca, E. & Mutvei, H. 1996. Periodic microgrowth patterns in shells of freshwater unionid bivalves. Bulletin de l'Institut océanographique, Monaco, no. special 14, 127–31.Google Scholar
Dunca, E. & Mutvei, H. 2001. Comparison of microgrowth pattern in Margaritifera margaritifera shells from south and north Sweden. American Malacological Bulletin 16, 239–50.Google Scholar
Dunca, E., Mutvei, H. & Schöne, B. R. 2005. Freshwater bivalves tell of past climates: But how clearly do shells from polluted rivers speak? Palaeogeography, Palaeoclimatology, Palaeoecology 228, 4357.CrossRefGoogle Scholar
Efron, B. & Tibshirani, R. 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science 1, 5475.Google Scholar
Epplé, V. M., Brey, T., Witbaard, R., Kuhnert, H. & Pätzold, J. 2006. Sclerochronological records of Arctica islandica from the inner German Bight. The Holocene 16, 763–9.CrossRefGoogle Scholar
Eronen, M., Zetterberg, P., Briffa, K. R., Lindholm, M., Meriläinen, J. & Timonen, M. 2002. The supra-long Scots pine tree-ring record for Finnish Lapland: Part 1, chronology construction and initial inferences. The Holocene 12, 673–80.CrossRefGoogle Scholar
Esper, J., Cook, E. R., Krusic, P. J., Peters, K. & Schweingruber, F. H. 2003. Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Research 59, 8198.Google Scholar
Esper, J., Cook, E. R. & Schweingruber, F. H. 2002. Low-frequency signals in long tree-ring chronologies and the reconstruction of past temperature variability. Science 295, 2250–3.CrossRefGoogle ScholarPubMed
Fritts, H. C. 1976. Tree rings and climate. London: Academic Press, 567 pp.Google Scholar
Fritts, H. C., Mosimann, J. E. & Bottorff, C. P. 1969. A revised computer program for standardizing tree-ring series. Tree-Ring Bulletin 29, 1520.Google Scholar
Grissino-Mayer, H. D. 2001. Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Research 57, 205–21.Google Scholar
Helama, S., Lindholm, M., Timonen, M. & Eronen, M. 2004. Detection of climate signal in dendrochronological data analysis: a comparison of tree-ring standardization methods. Theoretical and Applied Climatology 79, 239–54.CrossRefGoogle Scholar
Helama, S. & Nielsen, J. K. 2008. Construction of statistically reliable sclerochronology using subfossil shells of river pearl mussel. Journal of Paleolimnology 40, 247–61.CrossRefGoogle Scholar
Helama, S., Nielsen, J. K. & Valovirta, I. 2007. Conchology of endangered freshwater pearl mussel: conservation palaeobiology applied to museum shells originating from northern Finland. Bollettino Malacologico 43, 161–70.Google Scholar
Helama, S., Nielsen, J. K. & Valovirta, I. 2008. Evaluating contemporaneity and post-mortem age of archaeomalacological remains from Lapland using sclerochronology and dendrochronology. Archaeometry 50, doi: 10.1111/j.1475–4754.2008.00435.x, 17 pp.Google Scholar
Helama, S. & Valovirta, I. 2007. Shell morphometry, pre-mortal taphonomy and ontogeny-related growth characteristics of freshwater pearl mussel in northern Finland. Annales Zoologici Fennici 44, 285302.Google Scholar
Helama, S. & Valovirta, I. 2008. The oldest recorded animal in Finland: ontogenetic age and growth in Margaritifera margaritifera (L. 1758) based on internal shell increments. Memoranda Societatis pro Fauna et Flora Fennica 84, 2030.Google Scholar
Helama, S., Schöne, B. R., Black, B. A. & Dunca, E. 2006. Constructing long-term proxy series for aquatic environments with absolute dating control using a sclerochronological approach: introduction and advanced applications. Marine and Freshwater Research 57, 591–9.CrossRefGoogle Scholar
Helama, S., Schöne, B. R., Kirchhefer, A. J., Nielsen, J. K., Rodland, D. L. & Janssen, R. 2007. Compound response of marine and terrestrial ecosystems to varying climate: pre-anthropogenic perspective from bivalve shell growth increments and tree-rings. Marine Environmental Research 63, 185–99.CrossRefGoogle ScholarPubMed
Helama, S., Timonen, M., Lindholm, M., Meriläinen, J. & Eronen, M. 2005. Extracting long-period climate fluctuations from tree-ring chronologies over timescales of centuries to millennia. International Journal of Climatology 25, 1767–79.CrossRefGoogle Scholar
Hendelberg, J. 1960. The fresh-water pearl mussel, Margaritifera margaritifera (L.). On the localization, age, and growth of the individual and on the composition of the population according to an investigation in Pärlälven in Arctic Sweden. Fishery Board of Sweden, Institute of Freshwater Research (Drottningholm), Report 41, 149–71.Google Scholar
Hendy, E. J., Gagan, M. K. & Lough, J. M. 2003. Chronological control of coral records using luminescent lines and evidence for non-stationary ENSO teleconnections in northeast Australia. The Holocene 13, 187–99.CrossRefGoogle Scholar
Hendy, E. J., Lough, J. M. & Gagan, M. K. 2003. Historical mortality in massive Porites from the central Great Barrier Reef, Australia: evidence for past environmental stress? Coral Reefs 22, 207–15.CrossRefGoogle Scholar
Holmes, R. L. 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43, 6975.Google Scholar
Holopainen, J. 2006. Reconstructions of past climates from documentary and natural sources in Finland since the 18th century. Published Ph.D. thesis, Department of Geology, University of Helsinki, Finland. Publications of the Department of Geology D9, 1–33.Google Scholar
Hudson, J. H., Shinn, E. A., Halley, R. B. & Lidz, B. 1976. Sclerochronology: a tool for interpreting past environments. Geology 4, 361–4.2.0.CO;2>CrossRefGoogle Scholar
Jones, D. S. 1983. Sclerochronology: reading the record of the molluscan shell. American Scientist 71, 384–91.Google Scholar
Kidwell, S. M. 1991. The Stratigraphy of Shell Concentrations. In Taphonomy: Releasing the Data Locked in the Fossil Record (eds Allison, P. A. & Briggs, D. E. G.), pp. 211–90. New York: Plenum Press.CrossRefGoogle Scholar
Klingbjer, P. & Moberg, A. 2003. A composite monthly temperature record from Tornedalen in northern Sweden, 1802–2002. International Journal of Climatology 23, 1465–94.CrossRefGoogle Scholar
Liao, H., Mutvei, H., Sjöström, M., Hammarström, L. & Li, J. 2000. Tissue responses to natural aragonite (Margaritifera shell) implants in vivo. Biomaterials 21, 457–68.CrossRefGoogle ScholarPubMed
Lindholm, M. 1996. Reconstruction of past climate from ring-width chronologies of Scots pine (Pinus sylvestris L.) at the northern forest limit in Fennoscandia. Published Ph.D. thesis, University of Joensuu, Finland. Publications in Sciences 40, 1–169.Google Scholar
Linné, C. 1806. A general system of nature through the three grand kingdoms of animals, vegetables, and minerals, systematically divided into their several classes, orders, genera, species, and varieties, with their habitations, manners, economy, structure, and peculiarities: vol. 4, Worms. Translated and extended edition by W. Turton from Caroli Linnaei Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis. Editio decima tertia, aucta, reformata (ed. Gmelin, J. F., 1791). Lackington: Allen and Co., London.CrossRefGoogle Scholar
Lönnroth, E. 1941. Raakunpyynnissä ylämaissa. Luonnon ystävä 45, 1120.Google Scholar
Lutz, R. A. & Rhoads, D. C. 1980. Growth patterns within the molluscan shell. In Skeletal growth of aquatic organisms. Biological records of environmental change (eds Rhoads, D. C. & Lutz, R. A.), pp. 203–54. New York: Plenum Press.CrossRefGoogle Scholar
Marchitto, T. M., Jones, G. A., Goodfriend, G. A. & Weidman, C. R. 2000. Precise temporal correlation of Holocene mollusc shells using sclerochronology. Quaternary Research 53, 236–46.CrossRefGoogle Scholar
Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M., Karlén, W. & Lauritzen, S.-E. 2005. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433, 613–17.CrossRefGoogle ScholarPubMed
Montonen, M. 1985. Helmenpyynti. In Lappi 4: Saamelaisten ja suomalaisten maa (ed. Linkola, M.), pp. 321–5. Hämeenlinna, Finland: Karisto.Google Scholar
Mosteller, F. & Tukey, J. W. 1977. Data analysis and regression: a second course in statistics. Reading, Massachusetts: Addison-Wesley, 588 pp.Google Scholar
Mutvei, H., Dunca, E., Timm, H. & Slepukhina, T. 1996. Structure and growth rates of bivalve shells as indicators of environmental changes and pollution. Bulletin de l'Institut océanographique, Monaco, no. special 14, 65–72.Google Scholar
Mutvei, H. & Westermark, T. 2001. How environmental information can be obtained from Naiad shells. Ecological Studies 145, 367–79.CrossRefGoogle Scholar
Mutvei, H., Westermark, T., Dunca, E., Carell, B., Forberg, S. & Bignert, A. 1994. Methods for the study of environmental changes using the structural and chemical information in molluscan shells. Bulletin de l'Institut océanographique, Monaco, no. special 13, 163–86.Google Scholar
Nielsen, J. K. 2004. Taphonomy in the light of intrinsic shell properties and life habits: marine bivalves from the Eemian of northern Russia. Paläontologische Zeitschrift 78, 5372.CrossRefGoogle Scholar
Nielsen, J. K., Helama, S. & Nielsen, J. K. 2008. Taphonomy of freshwater mollusks in calcite-poor burdens: a case study of the river pearl mussel in north-eastern Finnish Lapland. Norwegian Journal of Geology 88, 103–16.Google Scholar
Oulasvirta, P. 2006. Kartoitusten tulokset – raakuttomia virtoja ja huipputiheyksiä. In Pohjoisten virtojen raakut (ed. Oulasvirta, P.), pp. 94121. Jyväskylä, Finland: Finnish Forest and Park Service.Google Scholar
Schöne, B. R., Dunca, E., Mutvei, H. & Norlund, U. 2004. A 217-year record of summer air temperature reconstructed from freshwater pearl mussels (M. margarifitera, Sweden). Quaternary Science Reviews 23, 1803–16.CrossRefGoogle Scholar
Scourse, J., Richardson, C., Forsythe, G., Harris, I., Heinemeier, J., Fraser, N., Briffa, K. & Jones, P. 2006. First cross-matched floating chronology from the marine fossil record: data from growth lines of the long-lived bivalve mollusc Arctica islandica. The Holocene 16, 967–74.CrossRefGoogle Scholar
Spurk, M., Leuschner, H. H., Baillie, M. G. L., Briffa, K. R. & Friedrich, M. 2002. Depositional frequency of German subfossil oaks: climatically and non-climatically induced fluctuations in the Holocene. The Holocene 12, 707–15.CrossRefGoogle Scholar
Strom, A., Francis, R. C., Mantua, N. J., Miles, E. L. & Peterson, D. L. 2004. North Pacific climate recorded in growth-rings of geoduck clams: a new tool for paleoenvironmental reconstruction. Geophysical Research Letters 31, doi:10.1029/2004GL019440, 4 pp.CrossRefGoogle Scholar
Strom, A., Francis, R. C., Mantua, N. J., Miles, E. L. & Peterson, D. L. 2005. Preserving low-frequency climate signals in growth records of geoduck clams (Panopea abrupta). Palaeogeography, Palaeoclimatology, Palaeoecology 229, 167–78.CrossRefGoogle Scholar
Valovirta, I. 1998. Conservation methods for populations of Margaritifera margaritifera (L.) in Finland. Journal of Conchology, Special Publication 2, 251–6.Google Scholar
Walker, M. J. C. 2005. Quaternary Dating Methods. Chichester: Wiley, 286 pp.Google Scholar
Wigley, T. M. L., Briffa, K. R. & Jones, P. D. 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23, 201–13.2.0.CO;2>CrossRefGoogle Scholar
Witbaard, R., Duineveld, G. C. A. & De Wilde, P. A. W. J. 1997. A long-term growth record derived from Arctica islandica (Mollusca, Bivalvia) from the Fladen Ground (Northern North Sea). Journal of the Marine Biological Association of the United Kingdom 77, 801–16.CrossRefGoogle Scholar