Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T12:55:48.828Z Has data issue: false hasContentIssue false

First report of Pan-African Sm—Nd and Rb—Sr mineral isochron ages from regional charnockites of southern India

Published online by Cambridge University Press:  01 May 2009

C. Unnikrishnan-Warrier
Affiliation:
Department of Geosciences, Faculty of Science, Osaka City University, Osaka 558, Japan
M. Santosh
Affiliation:
Department of Geosciences, Faculty of Science, Osaka City University, Osaka 558, Japan Centre for Earth Science Studies, P.B. 7250, Akkulam, Thuruvikkal Post, Trivandrum 695 031, India
M. Yoshida
Affiliation:
Department of Geosciences, Faculty of Science, Osaka City University, Osaka 558, Japan

Abstract

Mineral and whole-rock isotope data for a massive charnockite from Kottaram in the Nagercoil Block at the southern tip of Peninsular India yield Sm—Nd and Rb—Sr ages of 517 ± 26 Ma and 484 ± 15 Ma respectively. The Nd model age calculated for the charnockite is c. 2100 Ma. Our study reports the first Pan-African mineral isochron ages from regional charnockites of Peninsular India, which are in good agreement with the recently obtained ages of incipient charnockites in the adjacent blocks, as well as alkaline plutons within the same block. Our results indicate that the Pan-African tectonothermal event in the granulite blocks south of the Palghat—Cauvery shear zone was regional, with terrain-wide rejuvenation. These results correlate with similar Pan-African tectono-thermal events reported from Sri Lanka and East Antarctica, and have an important bearing on Gondwana reconstructions.

Type
Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balasubramaniam, M. N., 1975. Significance of K—Ar age of biotite from charnockite type area, Madras. In Precambrian geology of Peninsular shield, Geological Survey of India miscellaneous publication, No. 23, 233–5.Google Scholar
Baur, N., Kroner, A., Liew, T. C., Todt, W., Williams, I. S., & Hofmann, A. W., 1991. U—Pb isotopic systematics of zircons from prograde and retrograde transition zones in high-grade orthogneisses, Sri Lanka. Journal of Geology 99, 527–45.CrossRefGoogle Scholar
Bernard-Griffiths, J., Jahn, B.-M., & Sen, S. K., 1987. Sm—Nd isotopes and REE geochemistry of Madras granulites: an introductory statement. Precambrian Research 37, 343–55.CrossRefGoogle Scholar
Burton, K. W., & O’Nions, R. K., 1990. The timescale and mechanism of granulite formation at Kurunegala, Sri Lanka. Contributions to Mineralogy and Petrology 106, 6689.CrossRefGoogle Scholar
Chacko, T., Kumar, G. R. R., & Newton, R. C., 1987. Metamorphic P—T conditions of the Kerala (south India) Khondalite Belt, a granulite facies supracrustal terrain. Journal of Geology 95, 343–58.CrossRefGoogle Scholar
Choudhary, A. K., Harris, N. B. W., Van Calsteren, P., & Hawkesworth, C. J., 1992. Pan-African charnockite formation in Kerala, South India. Geological Magazine 129, 257–64.CrossRefGoogle Scholar
Crawford, A. R., 1969. India, Ceylon, Pakistan: new age data and comparison with Australia. Nature 233, 380–4.CrossRefGoogle Scholar
Grew, E. S., & Manton, W. I., 1984. Age of allanite from Kabbaldurga Quarry, Karnataka. Journal of the Geological Society of India 25, 193–5.Google Scholar
Harris, N. B. W., & Santosh, M., 1993. Chronological constraints on granulite formation in southern India and Sri Lanka. Memoir, Geological Society of India 25, 361–79.Google Scholar
Harris, N. B. W., Santosh, M., & Taylor, P. N., 1994. Crustal evolution in south India: constraints from Nd isotopes. Journal of Geology 102, 139–50.CrossRefGoogle Scholar
Jacobson, S. B., & Wasserberg, G. J., 1984. Sm—Nd isotopic evolution of chondrites and achondrites. Earth and Planetary Science Letters 67, 137–50.CrossRefGoogle Scholar
Kagami, H., Iwata, M., Sano, S., & Honma, H., 1987. Sr and Nd isotopic compositions and Rb, Sr Sm and Nd concentrations of standard samples. Technical Report, Institute for Study of the Earth’s Interior, Okayama University, Series B., 16 pp.Google Scholar
Kagami, H., Yokose, H., & Honma, H., 1989. 87Sr/80Sr and 143Nd/144Nd ratios of GSJ rock reference samples: JB-1a, JA-1a and JG-1a. Geochemical Journal 23, 209–14.CrossRefGoogle Scholar
Mahabeleswar, B., & Peucat, J. J., 1988. 2.9 b. y. Rb—Sr ages of the granulite facies rocks of Satnur-Halagur and Sivasamudram areas, Karnataka, south India. Journal of the Geological Society of India 32, 461–7.Google Scholar
Mezger, K., Essene, E. J., & Halliday, A. N., 1992. Closure temperature of the Sm—Nd system in metamorphic garnets. Earth and Planetary Science Letters 113, 397409.CrossRefGoogle Scholar
Nair, N. G. K., & Santosh, M., 1985. Geochemistry and petrogenesis of the Puttetti syenite, south India. Neues Jahrbuch fur Mineralogie, Abhandlungen 151, 213–27.Google Scholar
Peucat, J. J., Vidal, P., Bernard-Griffiths, J., & Condie, K. C., 1989. Sr, Nd and Pb isotopic systematics in the Archean low- to high-grade transition zone of southern India: syn-accretion vs. post-accretion granulites. Journal of Geology 97, 537–50.CrossRefGoogle Scholar
Raith, M., & Srikantappa, C., 1993. Arrested charnockite formation at Kottavattom, Southern India. Journal of Metamorphic Geology 11, 815–32.CrossRefGoogle Scholar
Rogers, J. J. W., Unrug, R., & Sultan, M., 1994. Tectonic assembly of Gondwana. Journal of Geodynamics 19, 134.CrossRefGoogle Scholar
Santosh, M., 1991. Role of CO2 in granulite petrogenesis: evidence from fluid inclusions. Journal of Geosciences, Osaka City University 34, 153.Google Scholar
Santosh, M., & Drury, S. A., 1988. Alkali granites with Pan-African affinities from Kerala, south India. Journal of Geology 96, 616–22.CrossRefGoogle Scholar
Santosh, M., Harris, N. B. W., Jackson, D. H., & Mattey, D. P., 1990. Dehydration and incipient charnockite formation: a phase equilibria and fluid inclusion study from southern India. Journal of Geology 98, 915–26.CrossRefGoogle Scholar
Santosh, M., Jackson, D. H., & Harris, N. B. W., 1993. The significance of channel and fluid-inclusion CO2 in cordierite: evidence from carbon isotopes. Journal of Petrology 34, 233–58.CrossRefGoogle Scholar
Santosh, M., Kagami, H., Yoshida, M., & Nanda-Kumar, V., 1992. Pan-African charnockite formation in East Gondwana: geochronologic (Sm—Nd and Rb—Sr) and petrogenetic constraints. Bulletin of the Indian Geologists’ Association 25, 110.Google Scholar
Shiraishi, K., Ellis, D. J., Hiroi, Y., Fanning, C. M., Motoyoshi, Y., & Nakai, Y., 1994. Cambrian orogenic belt in East Antarctica and Sri Lanka: implications for Gondwana assembly. Journal of Geology 102, 4765.CrossRefGoogle Scholar
Stahle, H. J., Raith, M., Hoernes, S., & Delfs, A., 1987. Element mobility during incipient granulite formation at Kabbaldurga, southern India. Journal of Petrology 28, 803–34.CrossRefGoogle Scholar
Unnikrishnan-Warrier, C., Santosh, M., & Yoshida, M., 1995. Isotopic signature of Pan-African rejuvenation in the Kerala Khondalite Belt, southern India: implications for Gondwana reassembly. Journal of the Geological Society of India (in press).Google Scholar
Unnikrishnan-Warrier, C., Yoshida, M., Kagami, H., & Santosh, M., 1993. Geochronological constraints on granulite formation in southern India: implications for East Gondwana reassembly. Journal of Geosciences, Osaka City University 36, 109–21.Google Scholar
Vance, D., & O’Nions, R. K., 1990. Isotopic chronomety of zoned garnets: growth kinetics and metamorphic histories. Earth and Planetary Science Letters 97, 227–40.CrossRefGoogle Scholar
Vidal, Ph., Peucat, J. J., Bernard-Griffiths, J., & Condie, K. C., 1988. Sr, Nd and Pb isotope systematics of the Archean low to high grade transition zone of southern India. Terra Cognit. 8, 262.Google Scholar
Vinagradov, A., Tugarinov, A., Zhycov, C., Stapnikova, N., Bikinova, E., & Khorre, K., 1964. Geochronology of Indian Precambrian. 22nd International Geological Congress Report 10, 553–67.Google Scholar
Wasserberg, G. J., Jacobson, S. B., De Paolo, D. J., McCulloch, M. T., & Wen, T., 1981. Precise determination of Sm—Nd ratios, Sm and Nd isotopic abundance in standard solutions. Geochimica et Cosmochimica Ada 45, 2311–23.CrossRefGoogle Scholar
Yoshida, M., Funaki, M., & Vitanage, P. W., 1992. Proterozoic to Mesozoic East Gondwana: the juxtaposition of India, Sri Lanka and Antarctica. Tectonics 11, 381–91.CrossRefGoogle Scholar
Yoshida, M., & Santosh, M., 1994. A tectonic perspective of incipient charnockite formation in East Gondwana. Precambrian Research 66, 379–92.CrossRefGoogle Scholar