Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T06:04:17.237Z Has data issue: false hasContentIssue false

Faunal Realms in Jurassic and Cretaceous Belemnites

Published online by Cambridge University Press:  01 May 2009

G. R. Stevens
Affiliation:
New Zealand Geological Survey, Lower Hutt, New Zealand.

Abstract

Boreal, Tethyan, and Indo-Pacific faunal realms may be recognized in belemnite faunas of Callovian and most of later Mesozoic time. The presence of such clearly-defined realms indicates restriction of belemnite migration and perhaps the belemnites were confined to the shelves, extensive areas of deep water forming barriers. Migration of belemnites in the Tethyan and Indo-Pacific realms may be explained in terms of deep water barriers, but delimitation of the Boreal realm is thought to be a result of climatic zoning.

Type
Articles
Copyright
Copyright © Cambridge University Press 1963

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkell, W. J., 1956. Jurassic Geology of the World. Edinburgh and London.Google Scholar
Basse, É., 1953. L'extension des Kossmaticeras dans les Mers Antarctico-Indo-Pacifiques au Neocrétacé. Proc. 7th Pacif. Sci. Congr., 2, 130–5.Google Scholar
Besairie, H., 1930. Recherches Géologiques a Madagascar. Toulouse.Google Scholar
Besairie, H., 1936. Recherches géologiques a Madagascar 1. La géologie due nordouest. Mem. Acad. malgache, 21.Google Scholar
Bowen, R., 1961. Paleotemperature analyses of Mesozoic Belemnoidea from Germany and Poland. J. Geol., 69, 7584.CrossRefGoogle Scholar
Bowen, R., 1961a. Paleotemperature analyses of Mesozoic Belemnoidea from Australia and New Guinea. Bull. geol. Soc. Amer., 72, 769–74.CrossRefGoogle Scholar
Bowen, R., 1961b. Paleotemperature analyses of Belemnoidea and Jurassic Paleoclimatology. J. Geol. 69, 309–20.CrossRefGoogle Scholar
Bowen, R., 1961c. Oxygen isotope paleotemperature measurements on Cretaceous Belemnoidea from Europe, India, and Japan. J. Paleont., 35, 1077–84.Google Scholar
Bülow-Trummer, E. V., 1920. Fossilium Catalogus. 1: Animalia. 11: Cephalopoda Dibranchiata. Berlin.Google Scholar
Dacqué, E., 1915. Grundlagen und Methoden der Paläogeographie. Jena.Google Scholar
David, T. W. E., 1950. The Geology of the Commonwealth of Australia. London.Google Scholar
Dorman, F. H., and Gill, E. D., 1959. Oxygen isotope palaeotemperature measurements on Australian fossils. Proc. roy. Soc. Vict., 71, 7398.Google Scholar
Epstein, S., 1959. The variations of the O18/O16 ratio in nature and some geologic interpretations. In: Abelson, P. H., Researches in Geochemistry. New York.Google Scholar
Epstein, S., Buchsbaum, R. Lowenstam, H. A. Urey, H. C., 1953. Revised carbonate-water isotopic temperature scale. Bull. geol. Soc. Amer., 64, 1315–26.CrossRefGoogle Scholar
Favre, F., 1908. Die ammoniten der unteren Kreide Patagoniens. Neues Jb. Min. Geol. Paläont., 25 (B-B), 601–47.Google Scholar
Fleming, C. A., 1962. New Zealand biogeography. Tuatara, 10, 53108.Google Scholar
Gignoux, M., 1950. Géologie Stratigraphique. Paris.Google Scholar
Gustomesov, V. A., 1956. Ecology of the belemnites of the Upper Jurassic of the Russian platform (in Russian). Bull. Soc. Nat. Moscou, Geol. Ser. 31, 113–4.Google Scholar
Jeletzky, J. A., 1951. Die stratigraphie die belemnitenfauna des Obercampan und Maastricht Westfalens, Nordwestdeutschlands und Dänemarks sowie einige allgemeine gliederungs-probleme der jüngeren borealen Oberkreide Eurasiens. Beih. Geol. Jb., 1.Google Scholar
Lowenstam, H. A. and Epstein, S., 1954. Paleotemperatures of the post-Aptian Cretaceous as determined by the oxygen isotope method. J. Geol., 62, 207–48.CrossRefGoogle Scholar
Lowenstam, H. A. and Epstein, S., 1959. Cretaceous paleotemperatures as determined by the oxygen isotope method, their relations to and the nature of Rudistid reefs. 20th Cong. Geol. Internac., Symp. “El Sistema Cretacico”, 1, 6576.Google Scholar
Naidin, D. P., 1954. Some distributional limits of European Upper Cretaceous Belemnites (in Russian). Bull. Soc. Nat. Moscou, Geol. Ser., 29, 1928.Google Scholar
Naidin, D. P., 1959. On the Palaeogeography of the Russian Platform during the Upper Cretaceous epoch. Stockholm Contrib. Geol., 3, 127–38.Google Scholar
Naidin, D. P., Teys, R. V. I., Chupakhin, M. S., 1956. Determination of the climatic conditions of some regions of the U.S.S.R. during the Upper Cretaceous period by the method of isotope paleothermometry. Geokhimya, 8, 752–64. (translation published by Geochemical Society, 1960).Google Scholar
Neumayr, M., 1883. Über Klimatische zonen während der Jura-und Kreidezeit. Denkschr. Akad. Wiss. Wien, 47, 277310.Google Scholar
Spath, L. F., 19271933. Revision of the Jurassic cephalopod fauna of Kachh (Cutch). Palaeont. indica, n.s. 9 (2).Google Scholar
Stevens, G. R., in press. The Jurassic and Cretaceous belemnites of New Zealand and a review of the Jurassic and Cretaceous belemnites of the Indo-Pacific region. N.Z. geol. Surv. Palaeont. Bull., 36.Google Scholar
Stolley, E., 1919. Die systematik der belemniten. Jber. niedersächs. geol. Ver., 11, 159.Google Scholar
Termier, H., and Termier, G., 1952. Histoire Géologique de la Biosphere. Paris.Google Scholar
Urey, H. C., Lowenstam, H. A., Epstein, S., McKinney, C. R., 1951. Measurement of palaeotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States. Bull. geol. Soc. Amer., 62, 399416.CrossRefGoogle Scholar
Wilckens, O., 1922. The Upper Cretaceous Gastropods of New Zealand. N.Z. geol. Surv. palaeont. Bull., 9.Google Scholar
Wilckens, O., 1924. Lahillia and some other fossils from the Upper Senonian of New Zealand. Trans. N.Z. Inst., 55, 539–44.Google Scholar
Ziegler, B., 1961. Stratigraphische und zoogeographische beobachtungen an Aulacostephanus (Ammonoidea-Oberjura). Paläont. Zeit., 35, 7989.CrossRefGoogle Scholar