Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T05:55:52.835Z Has data issue: false hasContentIssue false

Far-field brittle deformation record in the eastern Paris Basin (France)

Published online by Cambridge University Press:  14 October 2022

Thomas Blaise*
Affiliation:
Université Paris-Saclay, CNRS, GEOPS, Orsay 91405, France
Sid Ahmed Ali Khoudja
Affiliation:
Université Paris-Saclay, CNRS, GEOPS, Orsay 91405, France
Cédric Carpentier
Affiliation:
Université de Lorraine, CNRS, GeoRessources, Nancy 54500, France
Benjamin Brigaud
Affiliation:
Université Paris-Saclay, CNRS, GEOPS, Orsay 91405, France
Yves Missenard
Affiliation:
Université Paris-Saclay, CNRS, GEOPS, Orsay 91405, France
Xavier Mangenot
Affiliation:
Caltech, Geological and Planetary Sciences, Pasadena, CA 91106, USA
Philippe Boulvais
Affiliation:
Géosciences Rennes, CNRS, Univ. Rennes, UMR 6118, Rennes F35000, France
Philippe Landrein
Affiliation:
Centre de Meuse/Haute-Marne, Agence Nationale pour La Gestion des Déchets Radioactifs (ANDRA), RD 960, Bure 55290, France
Jean Cochard
Affiliation:
Centre de Meuse/Haute-Marne, Agence Nationale pour La Gestion des Déchets Radioactifs (ANDRA), RD 960, Bure 55290, France
*
Author for correspondence: Thomas Blaise, Email: [email protected]

Abstract

Jurassic carbonate strata in the eastern Paris Basin exhibit several generations of faults, tension gashes and stylolites. Although their relative chronology can sometimes be determined according to cross-cutting relationships, the duration of major deformation phases and their influence on fluid flow and carbonate cementation are still uncertain. This contribution aims to clarify the timing of brittle deformation and associated calcite cementation. Tension gashes filled by calcite in Jurassic carbonates were sampled in outcrops and boreholes and dated through U–Pb geochronology. Almost all the sampled fractures were cemented during the Cenozoic period. Continuous deformation spread from c. 50 to 30 Ma. Tension gashes oriented N10° to N20° dated at 48–43 Ma show the main Pyrenean contractional stage. A second set of calcites were dated at c. 35–33 Ma and document a Late Eocene – Oligocene extension. A transition from the compressional to the extensional regime is expressed by tension gashes dated between 43 and 35 Ma. Finally, tension gashes oriented N150° to N175°, dated between 32 and 18 Ma, may result from the propagation of the horizontal stress generated by the Alpine orogen or by late Pyrenean deformation. Clumped isotope thermometry on five samples revealed both low crystallization temperatures (from 27 to 53 °C) and the meteoric origin of calcite-precipitating fluids. Our research therefore documents a continuous fracturing from Ypresian to Rupelian times, and less expressed brittle deformation during the Miocene period.

Type
ABSOLUTE DATING OF FAULTS AND FRACTURES
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

André, G, Hibsch, C, Fourcade, S, Cathelineau, M and Buschaert, S (2010) Chronology of fracture sealing under a meteoric fluid environment: microtectonic and isotopic evidence of major Cainozoic events in the eastern Paris Basin (France). Tectonophysics 490, 214–28.CrossRefGoogle Scholar
Barbarand, J, Quesnel, F and Pagel, M (2013) Lower Paleogene denudation of Upper Cretaceous cover of the Morvan Massif and southeastern Paris Basin (France) revealed by AFT thermochronology and constrained by stratigraphy and paleosurfaces. Tectonophysics 608, 1310–27.CrossRefGoogle Scholar
Beaudoin, N, Lacombe, O, Roberts, NMW and Koehn, D (2018) U–Pb dating of calcite veins reveals complex stress evolution and thrust sequence in the Bighorn Basin, Wyoming, USA. Geology 46, 1015–8.CrossRefGoogle Scholar
Bergerat, F (1985) Déformations cassantes et champs de contrainte tertiaires dans la plate-forme européenne. Ph.D. thesis, Université Pierre et Marie Curie – Paris VI, Paris, France. Published thesis.Google Scholar
Bergerat, F (1987) Stress fields in the European platform at the time of Africa-Eurasia collision. Tectonics 6, 99132.CrossRefGoogle Scholar
Bergerat, F, Elion, P, Frizon de Lamotte, D, Proudhon, B, Combes, P, André, G, Willeveau, Y, Laurent-Charvet, S, Kourdian, R, Lerouge, G and Ott d’Estevou, P (2007) 3D multiscale structural analysis of the Eastern Paris Basin: the ANDRA contribution. Mémoire de la Société géologique de France 178, 1535.Google Scholar
Bergerat, F and Vandycke, S (1994) Palaeostress analysis and geodynamical implications of Cretaceous-Tertiary faulting in Kent and the Boulonnais. Journal of the Geological Society, London 151, 439–48.CrossRefGoogle Scholar
Blaise, T, Barbarand, J, Kars, M, Ploquin, F, Aubourg, C, Brigaud, B, Cathelineau, M, El Albani, A, Gautheron, C, Izart, A, Janots, D, Michels, R, Pagel, M, Pozzi, J-P, Boiron, M-C and Landrein, P (2014) Reconstruction of low temperature (<100 °C) burial in sedimentary basins: a comparison of geothermometer in the intracontinental Paris Basin. Marine and Petroleum Geology 53, 7187.CrossRefGoogle Scholar
Blaise, T, Cathelineau, M, Boulvais, P, Techer, I, Boiron, M-C, Tarantola, A, Brigaud, B and Landrein, P (2022) Origin of 87Sr enrichment in calcite cements in Jurassic limestones (Eastern Paris Basin, France). Applied Geochemistry 136, 105–31.CrossRefGoogle Scholar
Bonifacie, M, Calmels, D, Eiler, JM, Horita, J, Chaduteau, C, Vasconcelos, C, Agrinier, P, Katz, A, Passey, BH, Ferry, JM and Bourrand, J-J (2017) Calibration of the dolomite clumped isotope thermometer from 25 to 350 °C, and implications for a universal calibration for all (Ca, Mg, Fe)CO3 carbonates. Geochimica et Cosmochimica Acta 200, 255–79.CrossRefGoogle Scholar
Bons, PD, Elburg, MA and Gomez-Rivas, E (2012) A review of the formation of tectonic veins and their microstructures. Journal of Structural Geology 43, 3362.CrossRefGoogle Scholar
Brand, WA, Assonov, SS and Coplen, TB (2010) Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC Technical Report). Pure and Applied Chemistry 82, 1719–33.CrossRefGoogle Scholar
Briais, J, Guillocheau, F, Lasseur, E, Robin, C, Châteauneuf, JJ and Serrano, O (2016) Response of a low-subsiding intracratonic basin to long wavelength deformations: the Palaeocene–early Eocene period in the Paris Basin. Solid Earth 7, 205–28.CrossRefGoogle Scholar
Brigaud, B, Bonifacie, M, Pagel, M, Blaise, T, Calmels, D, Haurine, F and Landrein, P (2020) Past hot fluid flows in limestones detected by Δ47–(U–Pb) and not recorded by other geothermometers. Geology 48, 851–6.CrossRefGoogle Scholar
Brigaud, B, Durlet, C, Deconinck, J-F, Vincent, B, Pucéat, E, Thierry, J and Trouiller, A (2009) Facies and climate/environmental changes recorded on a carbonate ramp: a sedimentological and geochemical approach on Middle Jurassic carbonates (Paris Basin, France). Sedimentary Geology 222, 181206.CrossRefGoogle Scholar
Brigaud, B, Pucéat, E, Pellenard, P, Vincent, B and Joachimski, MM (2008) Climatic fluctuations and seasonality during the Late Jurassic (Oxfordian–Early Kimmeridgian) inferred from δ18O of Paris Basin oyster shells. Earth and Planetary Science Letters 273, 5867.CrossRefGoogle Scholar
Brigaud, B, Vincent, B, Carpentier, C, Robin, C, Guillocheau, F, Yven, B and Huret, E (2014) Growth and demise of the Jurassic carbonate platform in the intracratonic Paris Basin (France): interplay of climate change, eustasy and tectonics. Marine and Petroleum Geology 53, 329.CrossRefGoogle Scholar
Brigaud, B, Vincent, B, Pagel, M, Gras, A, Noret, A, Landrein, P and Huret, E (2018) Sedimentary architecture, depositional facies and diagenetic response to intracratonic deformation and climate change inferred from outcrops for a pivotal period (Jurassic/Cretaceous boundary, Paris Basin, France). Sedimentary Geology 373, 4876.CrossRefGoogle Scholar
Bruna, P-O, Guglielmi, Y, Lamarche, J, Floquet, M, Fournier, F, Sizun, J-P, Gallois, A, Marié, L, Bertrand, C and Hollender, F (2013) Porosity gain and loss in unconventional reservoirs: example of rock typing in Lower Cretaceous hemipelagic limestones, SE France (Provence). Marine and Petroleum Geology 48, 186205.CrossRefGoogle Scholar
Buschaert, S, Fourcade, S, Cathelineau, M, Deloule, E, Martineau, F, Ayt Ougougdal, M and Trouiller, A (2004) Widespread cementation induced by inflow of continental water in the eastern part of the Paris basin: O and C isotopic study of carbonate cements. Applied Geochemistry 19, 1201–15.CrossRefGoogle Scholar
Carpentier, C, Brigaud, B, Blaise, T, Vincent, B, Durlet, C, Boulvais, P, Pagel, M, Hibsch, C, Yven, B, Lach, P, Cathelineau, M, Boiron, M-C, Landrein, P and Buschaert, S (2014) Impact of basin burial and exhumation on Jurassic carbonates diagenesis on both sides of a thick clay barrier (Paris Basin, NE France). Marine and Petroleum Geology 53, 4470.CrossRefGoogle Scholar
Carpentier, C, Lathuilière, B and Ferry, S (2010) Sequential and climatic framework of the growth and demise of a carbonate platform: implications for the peritidal cycles (Late Jurassic, North-eastern France): growth and demise of a carbonate platform. Sedimentology 57, 9851020.CrossRefGoogle Scholar
Carpentier, C, Lathuilière, B, Ferry, S and Sausse, J (2007) Sequence stratigraphy and tectonosedimentary history of the Upper Jurassic of the Eastern Paris Basin (Lower and Middle Oxfordian, Northeastern France). Sedimentary Geology 197, 235–66.CrossRefGoogle Scholar
Coulon, M (1992) La distension oligocene dans le nord-est du bassin de Paris (perturbation des directions d’extension et distribution des stylolites). Bulletin de la Société géologique de France 163, 531–40.Google Scholar
Coulon, M and Frizon de Lamotte, D (1988) Les craies eclatees du secteur d’Omey (Marne, France); le resultat d’une brechification par fracturation hydraulique en contexte extensif. Bulletin de la Société géologique de France 4, 177–85.CrossRefGoogle Scholar
Cruset, D, Vergés, J, Albert, R, Gerdes, A, Benedicto, A, Cantarero, I and Travé, A (2020) Quantifying deformation processes in the SE Pyrenees using U–Pb dating of fracture-filling calcites. Journal of the Geological Society, London 177, 1186–96.CrossRefGoogle Scholar
Dennis, KJ, Affek, HP, Passey, BH, Schrag, DP and Eiler, JM (2011) Defining an absolute reference frame for ‘clumped’ isotope studies of CO2 . Geochimica et Cosmochimica Acta 75, 7117–31.CrossRefGoogle Scholar
Dèzes, P, Schmid, SM and Ziegler, PA (2004) Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389, 133.CrossRefGoogle Scholar
Durlet, C and Thierry, J (2000) Modalites sequentielles de la transgression aaleno-bajocienne sur le sud-est du Bassin parisien. Bulletin de la Société géologique de France 171, 327–39.CrossRefGoogle Scholar
Ge, S and Garven, G (1992) Hydromechanical modeling of tectonically driven groundwater flow with application to the Arkoma Foreland Basin. Journal of Geophysical Research 97, 9119–44.CrossRefGoogle Scholar
Goldstein, RH and Reynolds, TJ (1994) Systematics of Fluid Inclusions in Diagenetic Minerals. SEPM Short Course No. 31. Tulsa: SEPM (Society for Sedimentary Geology). CrossRefGoogle Scholar
Grool, AR, Ford, M, Vergés, J, Huismans, RS, Christophoul, F and Dielforder, A (2018) Insights into the crustal-scale dynamics of a doubly vergent orogen from a quantitative analysis of its forelands: a case study of the Eastern Pyrenees. Tectonics 37, 450–76.CrossRefGoogle Scholar
Guillocheau, F, Robin, C, Allemand, P, Bourquin, S, Brault, N, Dromart, G, Friedenberg, R, Garcia, J-P, Gaulier, J-M, Gaumet, F, Grosdoy, B, Hanot, F, Le Strat, P, Mettraux, M, Nalpas, T, Prijac, C, Rigoltet, C, Serrano, O and Grandjean, G (2000) Meso-Cenozoic geodynamic evolution of the Paris Basin: 3D stratigraphic constraints. Geodinamica Acta 13, 189245.Google Scholar
Hansman, RJ, Albert, R, Gerdes, A and Ring, U (2018) Absolute ages of multiple generations of brittle structures by U–Pb dating of calcite. Geology 46, 207–10.CrossRefGoogle Scholar
Hill, CA, Polyak, VJ, Asmerom, Y and Provencio, P (2016) Constraints on a Late Cretaceous uplift, denudation, and incision of the Grand Canyon region, southwestern Colorado Plateau, USA, from U-Pb dating of lacustrine limestone. Tectonics 35, 896906.CrossRefGoogle Scholar
Hoareau, G, Crognier, N, Lacroix, B, Aubourg, C, Roberts, NMW, Niemi, N, Branellec, M, Beaudoin, N and Suárez Ruiz, I (2021) Combination of Δ47 and U–Pb dating in tectonic calcite veins unravel the last pulses related to the Pyrenean Shortening (Spain). Earth and Planetary Science Letters 553, 116636. doi: 10.1016/j.epsl.2020.116636.CrossRefGoogle Scholar
Homberg, C, Bergerat, F, Philippe, Y, Lacombe, O and Angelier, J (2002) Structural inheritance and Cenozoic stress fields in the Jura fold-and-thrust belt (France). Tectonophysics 357, 137–58.CrossRefGoogle Scholar
Lacombe, O, Angelier, J, Bergerat, F and Laurent, P (1990) Tectoniques superposees et perturbations de contrainte dans la zone transformante Rhin-Saone; apport de l’analyse des failles et des macles de la calcite. Bulletin de la Société géologique de France 6, 853–63.CrossRefGoogle Scholar
Lacombe, O, Angelier, J, Laurent, Ph, Bergerat, F and Tourneret, Ch (1990) Joint analyses of calcite twins and fault slips as a key for deciphering polyphase tectonics: Burgundy as a case study. Tectonophysics 182, 279300.CrossRefGoogle Scholar
Lacombe, O, Laurent, P and Rocher, M (1996) Magnitude de la contrainte déviatorique pyrénéenne dans l’avant-pays nord-pyrénéen. Comptes Rendus de l’Académie des Sciences: Série 2, Earth and Planetary Sciences 322, 229–35.Google Scholar
Lacombe, O and Mouthereau, F (1999) Qu’est-ce que le front des orogènes ? L’exemple de l’orogène pyrénéen. Comptes Rendus de l’Académie des Sciences: Série 2, Earth and Planetary Sciences 329, 889–96.Google Scholar
Lacombe, O and Obert, D (2000) Héritage structural et déformation de couverture: plissement et fracturation tertiaires dans l’Ouest du bassin de Paris. Comptes Rendus de l’Académie des Sciences – Series IIA – Earth and Planetary Science 330, 793–8.Google Scholar
Lawson, M, Shenton, BJ, Stolper, DA, Eiler, JM, Rasbury, ET, Becker, TP, Phillips-Lander, CM, Buono, AS, Becker, SP, Pottorf, R, Gray, GG, Yurewicz, D and Gournay, J (2018) Deciphering the diagenetic history of the El Abra Formation of eastern Mexico using reordered clumped isotope temperatures and U–Pb dating. Geological Society of America Bulletin 130, 617–29.CrossRefGoogle Scholar
Lefort, A, Lathuilière, B, Carpentier, C and Huault, V (2011) Microfossil assemblages and relative sea-level fluctuations in a lagoon at the Oxfordian/Kimmeridgian boundary (Upper Jurassic) in the eastern part of the Paris Basin. Facies 57, 649–62.CrossRefGoogle Scholar
Lenoir, L, Blaise, T, Somogyi, A, Brigaud, B, Barbarand, J, Boukari, C, Nouet, J, Brézard-Oudot, A and Pagel, M (2021) Uranium incorporation in fluorite and exploration of U–Pb dating. Geochronology 3, 199227. doi: 10.5194/gchron-3-199-2021.CrossRefGoogle Scholar
Le Roux, J (1980) La tectonique de l’aureole orientale du bassin de Paris; ses relations avec la sedimentation. Bulletin de la Société géologique de France 22, 655–62.CrossRefGoogle Scholar
Letouzey, J (1986) Cenozoic paleo-stress pattern in the Alpine Foreland and structural interpretation in a platform basin. Tectonophysics 132, 215–31.CrossRefGoogle Scholar
Macchiavelli, C, Vergés, J, Schettino, A, Fernàndez, M, Turco, E, Casciello, E, Torne, M, Pierantoni, PP and Tunini, L (2017) A new southern North Atlantic isochron map: insights into the drift of the Iberian plate since the Late Cretaceous: Iberian plate kinematics since 83.5 Ma. Journal of Geophysical Research: Solid Earth 122, 9603–26.CrossRefGoogle Scholar
Malfilatre, C, Boulvais, P, Dabard, M-P, Bourquin, S, Hallot, E, Pallix, D and Gapais, D (2012) Petrographical and geochemical characterization of Comblanchien limestone (Bourgogne, France): a fingerprint of the building stone provenance. Comptes Rendus Geoscience 344, 1424.CrossRefGoogle Scholar
Mangenot, X, Gasparrini, M, Gerdes, A, Bonifacie, M and Rouchon, V (2018) An emerging thermochronometer for carbonate-bearing rocks: Δ47 /(U–Pb). Geology 46, 1067–70.CrossRefGoogle Scholar
Mazurek, M, Davis, DW, Madritsch, H, Rufer, D, Villa, IM, Sutcliffe, CN, de Haller, A and Traber, D (2018) Veins in clay-rich aquitards as records of deformation and fluid-flow events in northern Switzerland. Applied Geochemistry 95, 5770.CrossRefGoogle Scholar
Mouthereau, F, Angrand, P, Jourdon, A, Ternois, S, Fillon, C, Calassou, S, Chevrot, S, Ford, M, Jolivet, L, Manatschal, G, Masini, E, Thinon, I, Vidal, O and Baudin, T (2021) Cenozoic mountain building and topographic evolution in Western Europe: impact of billions of years of lithosphere evolution and plate kinematics. BSGF – Earth Sciences Bulletin 192, 56. doi: 10.1051/bsgf/2021040.CrossRefGoogle Scholar
Nuriel, P, Weinberger, R, Kylander-Clark, ARC, Hacker, BR and Craddock, JP (2017) The onset of the Dead Sea transform based on calcite age-strain analyses. Geology 45, 587–90.CrossRefGoogle Scholar
Olivier, N, Carpentier, C, Martin-Garin, B, Lathuilière, B, Gaillard, C, Ferry, S, Hantzpergue, P and Geister, J (2004) Coral-microbialite reefs in pure carbonate versus mixed carbonate-siliciclastic depositional environments: the example of the Pagny-sur-Meuse section (Upper Jurassic, northeastern France). Facies 50, 229–55.CrossRefGoogle Scholar
O’Neil, JR, Clayton, RN and Mayeda, TK (1969) Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics 51, 5547–57.CrossRefGoogle Scholar
Pagel, M, Bonifacie, M, Schneider, DA, Gautheron, C, Brigaud, B, Calmels, D, Cros, A, Saint-Bezar, B, Landrein, P, Sutcliffe, C, Davis, D and Chaduteau, C (2018) Improving paleohydrological and diagenetic reconstructions in calcite veins and breccia of a sedimentary basin by combining Δ47 temperature, δ18Owater and U–Pb age. Chemical Geology 481, 117.CrossRefGoogle Scholar
Parizot, O, Missenard, Y, Barbarand, J, Blaise, T, Benedicto, A, Haurine, F and Sarda, P (2022) How sensitive are intraplate inherited structures? Insight from the Cévennes Fault System (Languedoc, SE France). Geological Magazine, published online 11 April 2022. doi: 10.1017/S0016756822000152.CrossRefGoogle Scholar
Parizot, O, Missenard, Y, Haurine, F, Blaise, T, Barbarand, J, Benedicto, A and Sarda, P (2021) When did the Pyrenean shortening end? Insight from U–Pb geochronology of syn-faulting calcite (Corbières area, France). Terra Nova 33, 551–9.CrossRefGoogle Scholar
Parrish, RR, Parrish, CM and Lasalle, S (2018) Vein calcite dating reveals Pyrenean orogen as cause of Paleogene deformation in southern England. Journal of the Geological Society, London 175, 425–42.CrossRefGoogle Scholar
Passey, BH, Levin, NE, Cerling, TE, Brown, FH and Eiler, JM (2010) High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proceedings of the National Academy of Sciences of the United States of America 107, 11245–9. doi: 10.1073/pnas.1001824107.CrossRefGoogle ScholarPubMed
Paton, C, Hellstrom, J, Paul, B, Woodhead, J and Hergt, J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26, 2508. doi: 10.1039/C1JA10172B.CrossRefGoogle Scholar
Pisapia, C, Deschamps, P, Battani, A, Buschaert, S, Guihou, A, Hamelin, B and Brulhet, J (2018) U/Pb dating of geodic calcite: new insights on Western Europe major tectonic events and associated diagenetic fluids. Journal of the Geological Society, London 175, 6070.CrossRefGoogle Scholar
Ring, U and Gerdes, A (2016) Kinematics of the Alpenrhein-Bodensee graben system in the Central Alps: Oligocene/Miocene transtension due to formation of the Western Alps arc: Alpenrhein-Bodensee graben system. Tectonics 35, 1367–91.CrossRefGoogle Scholar
Roberts, NMW and Holdsworth, RE (2022) Timescales of faulting through calcite geochronology: a review. Journal of Structural Geology 158, 104578. doi: 10.1016/j.jsg.2022.104578.CrossRefGoogle Scholar
Roberts, NMW, Lee, JK, Holdsworth, RE, Jeans, C, Farrant, AR and Haslam, R (2020) Near-surface Palaeocene fluid flow, mineralisation and faulting at Flamborough Head, UK: new field observations and U–Pb calcite dating constraints. Solid Earth 11, 1931–45.CrossRefGoogle Scholar
Roberts, NMW, Rasbury, ET, Parrish, RR, Smith, CJ, Horstwood, MSA and Condon, DJ (2017) A calcite reference material for LA-ICP-MS U–Pb geochronology. Geochemistry, Geophysics, Geosystems 18, 2807–14.CrossRefGoogle Scholar
Rocher, M, Cushing, M, Lemeille, F, Lozac’h, Y and Angelier, J (2004) Intraplate paleostresses reconstructed with calcite twinning and faulting: improved method and application to the eastern Paris Basin (Lorraine, France). Tectonophysics 387, 121.CrossRefGoogle Scholar
Sibson, H (1994) Crustal stress, faulting and fluid flow. In Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins (ed. Parnell, J), pp. 6984. Geological Society of London, Special Publication no. 78.Google Scholar
Smeraglia, L, Looser, N, Fabbri, O, Choulet, F, Guillong, M and Bernasconi, SM (2021) U–Pb dating of middle Eocene–Pliocene multiple tectonic pulses in the Alpine foreland. Solid Earth 12, 2539–51.CrossRefGoogle Scholar
Sun, X, Gomez-Rivas, E, Cruset, D, Alcalde, J, Muñoz-Lopez, D, Cantarero, I, Martin-Martin, JD, John, CM and Travé, A (2022) Origin and distribution of calcite cements in a folded fluvial succession: the Puig-reig anticline (south-eastern Pyrenees). Sedimentology 69, 2319–47.CrossRefGoogle Scholar
Sutcliffe, CN, Thibodeau, AM, Davis, DW, Al-Aasm, I, Parmenter, A, Zajacz, Z and Jensen, M (2020) Hydrochronology of a proposed deep geological repository for low- and intermediate-level nuclear waste in southern Ontario from U–Pb dating of secondary minerals: response to Alleghanian events. Canadian Journal of Earth Sciences 57, 494505.CrossRefGoogle Scholar
Swart, PK, Burns, SJ and Leder, JJ (1991) Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chemical Geology: Isotope Geoscience Section 86, 8996.Google Scholar
Vandeginste, V, Swennen, R, Allaeys, M, Ellam, RM, Osadetz, K and Roure, F (2012) Challenges of structural diagenesis in foreland fold-and-thrust belts: a case study on paleofluid flow in the Canadian Rocky Mountains West of Calgary. Marine and Petroleum Geology 35, 235–51.CrossRefGoogle Scholar
Vermeesch, P (2018) IsoplotR: a free and open toolbox for geochronology. Geoscience Frontiers 9, 1479–93.CrossRefGoogle Scholar
Villemin, T (1986) La chronologie des événements tectoniques dans le Nord-Est de la France et le Sud-Ouest de l’Allemagne du Permien à l’Actuel. Comptes Rendus de l’Académie des Sciences de Paris 303, 1685–90.Google Scholar
Vincent, B, Emmanuel, L, Houel, P and Loreau, J-P (2007) Geodynamic control on carbonate diagenesis: petrographic and isotopic investigation of the Upper Jurassic formations of the Paris Basin (France). Sedimentary Geology 197, 267–89.CrossRefGoogle Scholar
Woodhead, JD, Horstwood, MSA and Cottle, P (2016) Advances in isotope ratio determination by LA–ICP–MS. Elements 12, 317–22.CrossRefGoogle Scholar
Ziegler, PA (1987) Late Cretaceous and Cenozoic intra-plate compressional deformations in the Alpine foreland—a geodynamic model. Tectonophysics 137, 389420.CrossRefGoogle Scholar
Ziegler, PA (1990) Geological Atlas of Western and Central Europe. The Hague: Shell Internationale Petroleum Maatschappij B.V.Google Scholar
Ziegler, PA and Dèzes, P (2007) Cenozoic uplift of Variscan Massifs in the Alpine foreland: timing and controlling mechanisms. Global and Planetary Change 58, 237–69.CrossRefGoogle Scholar
Supplementary material: File

Blaise et al. supplementary material

Blaise et al. supplementary material 1

Download Blaise et al. supplementary material(File)
File 108.9 KB
Supplementary material: File

Blaise et al. supplementary material

Blaise et al. supplementary material 2

Download Blaise et al. supplementary material(File)
File 40.3 MB
Supplementary material: File

Blaise et al. supplementary material

Blaise et al. supplementary material 3

Download Blaise et al. supplementary material(File)
File 139.9 KB