Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T18:20:00.792Z Has data issue: false hasContentIssue false

Evidence for prey preference partitioning in the middle Eocene high-diversity crocodylian assemblage of the Geiseltal-Fossillagerstätte, Germany utilizing skull shape analysis

Published online by Cambridge University Press:  02 February 2016

ALEXANDER K. HASTINGS*
Affiliation:
Geiseltalsammlung, Zentralmagazin Naturwissenschaftlicher Sammlungen, Martin-Luther-Universität Halle-Wittenberg, Domplatz 4, 06108 Halle (Saale), Germany
MEINOLF HELLMUND
Affiliation:
Geiseltalsammlung, Zentralmagazin Naturwissenschaftlicher Sammlungen, Martin-Luther-Universität Halle-Wittenberg, Domplatz 4, 06108 Halle (Saale), Germany
*
Author for correspondence: [email protected]

Abstract

The Geiseltal fossil collection from southern Sachsen-Anhalt Germany contains remarkably well-preserved fossils of middle Eocene age. These include several crocodylian skulls, representing at least four different genera with a fifth genus represented by two mandibular rami. As sites with this many crocodylian genera are unknown in modern ecosystems, it has been hypothesized that these crocodylians may have differences in habit as compared to living crocodylians. In order to test similarities between the Geiseltal crocodylians and extant species, an analysis was conducted using geometric morphometrics to quantify shape in crocodylian skulls of all living species (n = 218) and all well-preserved crocodylian skulls of the Geiseltal fauna (n = 28). A relative warps analysis was used to quantify and compare skull shape, revealing Allognathosuchus and Boverisuchus to be very distinct from each other as well as from Asiatosuchus and Diplocynodon. Overlap in shape alone exists between some Diplocynodon and some Asiatosuchus, but there was significant difference in adult size. When compared with extant crocodylians, three Geiseltal genera occupied distinctly non-modern morphospace in the first two relative warps axes. Comparison of the diets of living crocodylians with similarly shaped skulls was used to reconstruct the prey preferences of the Geiseltal crocodylians, revealing differences in specialization. During the middle Eocene high global temperatures, partitioning of prey preference may have allowed this group to attain its higher than usual diversity, reducing the amount of direct competition.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current Address: Virginia Museum of Natural History, 21 Starling Avenue, Martinsville, Virginia, 24112, USA

References

Aguilar, J. P., Legendre, S. & Michaux, J. 1997. Actes du Congrès Biochrom’97. Mémoires et Travaux de l'Institut de Montpellier de l'Ecole Pratique des Hautes Etudes 21, 1818.Google Scholar
Berg, D. E. 1964. Krokodile als Klimazeugen. Geologische Rundschau 54, 328–33.CrossRefGoogle Scholar
Berg, D. E. 1966. Die Krokodile, insbesondere Asiatosuchus und aff. Sebecus?, aus dem Eozän von Messel bei Darmstadt/Hessen. Abhandlungen des Hessischen Landesamtes für Bodenforschung 52, 1105.Google Scholar
Beurlen, K. 1938. Crustaceenreste aus der Geiseltalbraunkohle. Nova Acta Leopoldina, Neue Folge 5, 361–8.Google Scholar
Bookstein, F. L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge: Cambridge University Press, 456 pp.Google Scholar
Borteiro, C., Gutiérrez, F., Tedros, M. & Kolenc, F. 2009. Food habits of the broad-snouted Caiman (Caiman latirostris: Crocodylia, Alligatoridae) in northwestern Uruguay. Studies on Neotropical Fauna and Environment 44, 31–6.Google Scholar
Brochu, C. A. 1996. Closure of neurocentral sutures during crocodilian ontogeny: implications for maturity assessment in fossil archosaurs. Journal of Vertbrate Paleontology 16, 4962.Google Scholar
Brochu, C. A. 2001. Crocodylian snouts in space and time: phylogenetic approaches toward adaptive radiation. American Zoologist 41, 564–85.Google Scholar
Brochu, C. A. 2004. Alligatorine phylogeny and the status of Allognathosuchus Mook, 1921. Journal of Vertebrate Paleontology 24, 857–73.Google Scholar
Brochu, C. A. 2013. Phylogenetic relationships of Palaeogene ziphodont eusuchians and the status of Pristichampsus Gervais, 1853. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 103, 130.Google Scholar
Buchy, M.-C., Young, M. T. & de Andrade, M. B. 2013. A new specimen of Cricosaurus saltillensis (Crocodylomorpha: Metriorhynchidae) from the Upper Jurassic of Mexico: evidence for craniofacial convergence within Metriorhynchidae. Oryctos 10, 921.Google Scholar
Busbey, A. B. 1994. The structural consequences of skull flattening in crocodilians. In Functional Morphology in Vertebrate Paleontology (ed. Thomason, J.), pp. 173–92. Cambridge: Cambridge University Press.Google Scholar
Carpenter, K. & Lindsey, D. 1980. The dentary of Brachychampsa montana Gilmore (Alligatorinae; Crocodylidae), a Late Cretaceous turtle-eating alligator. Journal of Paleontology 54, 1213–7.Google Scholar
Chang, M. S., Gaschal, G. S., Qadri, A. H. & Shaikh, M. Y. 2012. Bio-ecological status, management and conservation of Marsh Crocodiles (Crocodylus palustris) in Deh Akro 2, Sindh-Pakistan. Sindh University Research Journal, Science Series 44, 209–14.Google Scholar
Cuff, A. R. & Rayfield, E. J. 2013. Feeding mechanics in spinosaurid theropods and extant crocodilians. PLoS ONE 8 (5), e65295.Google Scholar
D'Amore, D. C. & Blumenschine, R. J. 2009. Komodo monitor (Varanus komodoensis) feeding behavior and dental function reflected through tooth marks on bone surfaces, and the application to ziphodont paleobiology. Paleobiology 35, 525–52.Google Scholar
De Silva, M. C., Amarasinghe, A. A. T., de Silva, A. & Karunarathna, D. M. S. S. 2011. Mugger crocodile (Crocodylus palustris Lesson, 1831) preys on a radiated tortoise in Sri Lanka. Taprobanica 3, 3841.Google Scholar
Delany, M. F. & Abercrombie, C. L. 1986. American alligator food habits in north-central Florida. Journal of Wildlife Management 50, 348–53.CrossRefGoogle Scholar
Delfino, M. & Smith, T. 2009. A reassessment of the morphology and taxonomic status of ‘Crocodylusdepressifrons Blainville, 1855 (Crocodylia, Crocodyloidea) based on the Early Eocene remains from Belgium. Zoological Journal of the Linnean Society 156, 140–67.CrossRefGoogle Scholar
Delfino, M. & Smith, T. 2012. Reappraisal of the morphology and phylogenetic relationships of the middle Eocene alligatoroid Diplocynodon deponiae (Frey, Laemmert, and Riess, 1987) based on a three-dimensional specimen. Journal of Vertebrate Paleontology 32, 1358–69.CrossRefGoogle Scholar
Dryden, I. L. & Mardia, K. V. 1998. Statistical Shape Analysis. New York: John Wiley and Sons, 347 pp.Google Scholar
Eaton, M. J. 2010. Dwarf Crocodile Osteolaemus tetraspis . In Crocodiles: Status Survey and Conservation Action Plan, Third Edition (eds Manolis, S. C. & Stevenson, C.), pp. 127–32. Darwin: Crocodile Specialist Group, IUCN.Google Scholar
Endo, H., Aoki, R., Taru, H., Kimura, J., Sasaki, M., Yamamoto, M., Arishima, K. & Hayashi, Y. 2002. Comparative functional morphology of the masticatory apparatus in the long-snouted crocodiles. Anatomia, Histologia, Embryologia 31, 206–13.CrossRefGoogle ScholarPubMed
Erickson, G. M., Gignac, P. M., Lappin, A. K., Vliet, K. A., Brueggen, J. D. & Webb, G. J. W. 2014. A comparative analysis of ontogenetic bite-force scaling among Crocodylia. Journal of Zoology 292, 4855.Google Scholar
Erickson, G. M., Gignac, P. M., Steppan, S. J., Lappin, A. K., Vliet, K. A., Brueggen, J. D., Inouye, B. D., Kledzik, D. & Webb, G. J. W. 2012. Insights into the ecology and evolutionary success of crocodilians revealed through bite-force and tooth-pressure experimentation. PLoS ONE 7, e31781.Google Scholar
Farlow, J. O., Hurlburt, G. R., Elsey, R. M., Britton, A. R. C. & Langston, W. Jr. 2005. Femoral dimensions and body size of Alligator mississippiensis: Estimating the size of extinct mesoeucrocodylians. Journal of Vertebrate Paleontology 25, 354–69.Google Scholar
Farlow, J. O. & Pianka, E. R. 2003. Body size overlap, habitat partitioning and living space requirements of terrestrial vertebrate predators: implications for the paleoecology of large theropod dinosaurs. Historical Biology 16, 2140.CrossRefGoogle Scholar
Fischer, K.-H. 1962. Der Riesenlaufvogel Diatryma aus der eozänen Braunkohle des Geiseltals. Hallesches Jahrbuch für Mitteldeutsche Erdgeschichte 4, 2633.Google Scholar
Franzen, J. L. 2004. First fossil primates from Eckfeld Maar, Middle Eocene (Eifel, Germany). Eclogae Geologicae Helvetiae 97, 213–20.Google Scholar
Franzen, J. L. 2005. The implications of the numerical dating of the Messel fossil deposit (Eocene, Germany) for mammalian biochronology. Annales de Paléontologie 91, 329–35.Google Scholar
Franzen, J. L. 2006. Eurohippus n. g., a new genus of horses from the Middle to Late Eocene of Europe. Senckenbergiana lethaea 86, 99102.CrossRefGoogle Scholar
Franzen, J. L. & Haubold, H. 1986. Revision der Equoidea aus den eozänen Braunkohlen des Geiseltales bei Halle (DDR). Palaeovertebrata 16, 134.Google Scholar
Franzen, J. L. & Haubold, H. 1987. The biostratigraphic and palaeoecologic significance of the Middle Eocene locality Geiseltal near Halle (German Democratic Republic). Münchner Geowissenschaftliche Abhandlungen A 10, 93100.Google Scholar
Frazzetta, T. H. 1988. The mechanics of cutting and the form of shark teeth (Chondrichthyes, Elasmobranchii). Zoomorphology 108, 93107.CrossRefGoogle Scholar
Frey, E. & Monninger, S. 2010. Lost in action—the isolated crocodilian teeth from Enspel and their interpretive value. Palaeobiodiversity and Palaeoenvironments 90, 6581.Google Scholar
Gaudant, J. 1988. L'ichthyofaune éocène de Messel et du Geiseltal (Allemagne): Essai d'approche paléobiogéographique. Courier Forschungsinstitut Senckenberg 107, 355–67.Google Scholar
Gaudant, J. & Haubold, H. 1995. Ein Lepisosteide (Pisces, Ginglymodi) aus dem Mittel-Eozän des Geiseltales bei Halle (Sachsen-Anhalt, Deutschland). Neues Jahrbuch fur Geologie und Palaontologie-Monatshefte, 5, 271–8.Google Scholar
Haubold, H. & Krumbiegel, G. 1984. Typenkatalog der Wirbeltiere aus dem Eozän des Geiseltals. Halle: Druck und Buch Merseburg, Zweigbetrieb des Druckhaus Freiheit, 67 pp.Google Scholar
Haubold, H. & Thomae, M. 1990. Stratigraphische Revision der Wirbeltierfundstellen des Geiseltaleozäns. Hallesches Jahrbuch für Geowissenschaften 15, 320.Google Scholar
Hellmund, M. 2007. Exkursion: Ehemaliges Geiseltalrevier, südwestlich von Halle (Salle). Aus der Vita des eozänen Geiseltales. Hallesches Jahrbuch für Geowissenschaften, Reihe B 23, 116.Google Scholar
Hellmund, M. 2013 a. Odontological and osteological investigations on propalaeotheriids (Mammalia, Equidae) from the Eocene Geiseltal Fossillagerstätte (Central Germany): a full range of extraordinary phenomena. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 267, 127–54.Google Scholar
Hellmund, M. 2013 b. Reappraisal of the bone inventory of Gastornis geiselensis (Fischer, 1978) from the Eocene “Geiseltal Fossillagerstätte” (Saxony-Anhalt, Germany). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 269, 203–20.Google Scholar
Hellmund, M. & Koehn, C. 2000. Skelettrekonstruktion von Propalaeotherium hassiacum (Equidae, Perissodactyla, Mammalia) basierend auf Funden aus dem eozänen Geiseltal (Sachsen-Anhalt, Germany). Hallesches Jahrbuch für Geowissenschaften, Reihe B 12, 155.Google Scholar
Henderson, D. M. 2010. Skull shapes as indicators of niche partitioning by sympatric chasmosaurine and centrosaurine dinosaurs. In Perspectives on Horned Dinosaurs: The Royal Tyrrell Museum Ceratopsian Symposium (eds Ryan, M. J., Chinnery-Allgeier, B. J. & Eberth, D. A.), pp. 293307. Bloomington, Indiana, USA: Indiana University Press.Google Scholar
Houde, P. & Haubold, H. 1987. Palaeotis weigelti restudied: a small middle Eocene ostrich (Aves: Struthioniformes). Palaeovertebrata 17, 2742.Google Scholar
Hummel, K. 1935. Schildkröten aus der mitteleozänen Braunkohle des Geiseltales. Nova Acta Leopoldina, Neue Folge 2, 457–83.Google Scholar
Jiménez-Fuentes, E. 2003. Predación crocodiliana a quelonios; un Neochelys (Pelomedusidae), del Eoceno de Zamora, lisiado por un Asiatosuchus . Studia Geologica Salmanticensia 39, 1123.Google Scholar
Keller, T. & Schaal, S. 1988. Krokodile: Urtümliche Großechsen. In Messel: Ein Schaufenster in die Geschichte der Erde und des Lebens (eds Schaal, S. & Ziegler, W.), pp. 109–19. Frankfurt am Main: Verlag Waldemar Kramer.Google Scholar
Kellner, A. W. A., Pinheiro, A. E. P. & Campos, D. A. 2014. A new sebecid from the Paleogene of Brazil and the crocodyliform radiation after the K–Pg boundary. PLoS ONE 9 (1): e81386.Google Scholar
Krumbiegel, G. 1959. Die tertiäre Pflanzen-und Tierwelt der Braunkohle des Geiseltales. Die Neue Brehm-Bücherei 237, Wittenberg: A. Ziemsen Verlag, 156 pp.Google Scholar
Krumbiegel, G. 1963. Weitere Gastropodenfunde in der eozänen Braunkohle des Geiseltales und ihre stratigraphische Bedeutung. Geologie 12, 1065–103.Google Scholar
Krumbiegel, G. 1977. Genese, Palökologie und Biostratigraphie der Fossilfundstellen im Eozän des Geiseltales. Kongreß und Tagungsberichte der Martin-Luther-Universität Halle-Wittenberg, Wissenschaftliche Beiträge 1977/2, 113–38.Google Scholar
Krumbiegel, G. 1990. Bivalven (Familie Unionidae; Gattung Anodonta) des Geiseltalium im mittleren und westlichen Geiseltal bei Halle/Saale. Zeitschrift für Geologische Wissenschaften 18, 335–48.Google Scholar
Krumbiegel, G., Rüffle, L. & Haubold, H. 1983. Das Eozäne Geiseltal, ein mitteleuropäisches Braunkohlenvorkommen und seine Pflanzen und Tierwelt. Die Neue Brehm-Bücherei 237, Wittenberg Lutherstadt: A. Ziemsen Verlag, 228 pp.Google Scholar
Lutz, H. & Kaulfuß, U. 2006. A dynamic model for the meromictic lake Eckfeld Maar (Middle Eocene, Germany). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 157, 433–50.Google Scholar
Magnusson, W. E. & Campos, Z. 2010. Cuvier's smooth-fronted Caiman Paleosuchus palpebrosus . In Crocodiles: Status Survey and Conservation Action Plan, Third Edition (eds Manolis, S. C. & Stevenson, C.), pp. 4042. Darwin: Crocodile Specialist Group, IUCN.Google Scholar
Magnusson, W. E., Vieira da Silva, E. & Lima, A. P. 1987. Diets of Amazonian crocodilians. Journal of Herpetology 21, 8595.Google Scholar
Mannion, P. D., Benson, R. B. J., Carrano, M. T., Tennant, J. P., Judd, J. & Butler, R. J. 2015. Climate constrains the evolutionary history and biodiversity of crocodylians. Nature Communications 6, 8438, doi: 10.1038/ncomms9438.Google Scholar
Markwick, P. J. 1998 a. Fossil crocodylomorphs as indicators of Late Cretaceous and Cenozoic climates: implications for using palaeontological data in reconstructing palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 137, 205–71.Google Scholar
Markwick, P. J. 1998 b. Crocodilian diversity in space and time: the role of climate in paleoecology and its implication for understanding K/T extinctions. Paleobiology 24, 470–97.Google Scholar
Martin, J. E. 2010. A new species of Diplocynodon (Crocodylia, Alligatoroidea) from the Late Eocene of the Massif Central, France, and the evolution of the genus in the climatic context of the Late Palaeogene. Geological Magazine 147, 596610.Google Scholar
Martin, J .E., Amiot, R., Lécuyer, C. & Benton, M. J. 2014. Sea surface temperature contributes to marine crocodylomorph evolution. Nature Communications 5, 4658, doi: 10.1038/ncomms5658.Google Scholar
Martin, J. E. & Gross, M. 2011. Taxonomic clarification of Diplocynodon POMEL, 1847 (Crocodilia) from the Miocene of Styria, Austria. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 261, 177–93.Google Scholar
Martin, J. E., Smith, T., De Lapparent De Broin, F., Escuillié, F. & Delfino, M. 2014. Late Palaeocene eusuchian remains from Mont de Berru, France, and the origin of the alligatoroid Diplocynodon . Zoological Journal of the Linnean Society 172, 867–91.Google Scholar
McHenry, C. R., Clausen, P. D., Daniel, W. J. T., Meers, M. B. & Pendharkar, A. 2006. Biomechanics of the rostrum in crocodilians: a comparative analysis using finite-element modeling. The Anatomical Record, Part A 288A, 827–49.Google Scholar
Medem, F. 1981. Los Crocodylia de Sur América, vol. I. Bogotá: Colciencias, 354 pp.Google Scholar
Mertz, D. F. & Renne, P. R. 2005. A numerical age for the Messel deposit (UNESCO World Heritage Site) derived from 40Ar/39Ar dating on a basaltic rock fragment. Courier Forschungsinstitut Senckenberg 255, 6775.Google Scholar
Mertz, D. F., Swisher, C. C., Franzen, J. L., Neuffer, F. O. & Lutz, H. 2000. Numerical dating of the Eckfeld maar fossil site, Eifel, Germany: a calibration mark for the Eocene time scale. Naturwissenschaften 87, 270–74.Google Scholar
Mitteroecker, P. & Gunz, P. 2009. Advances in geometric morphometrics. Evolutionary Biology 36, 235–47.Google Scholar
Montefeltro, F. C., Larsson, H. C. E. & Langer, M. C. 2011. A New Baurusuchid (Crocodyliformes, Mesoeucrocodylia) from the Late Cretaceous of Brazil and the phylogeny of Baurusuchidae. PLoS ONE 6 (7): e21916.Google Scholar
Morgan, G. S. & Albury, N. A. 2013. The Cuban crocodile (Crocodylus rhombifer) from Late Quaternary fossil deposits in the Bahamas and Cayman Islands. Florida Museum of Natural History Bulletin 52, 161236.Google Scholar
Morlo, M. 1999. Niche structure and evolution in creodont (Mammalia) faunas of the European and North American Eocene. Geobios 32, 297305.Google Scholar
Morlo, M., Schaal, S., Mayr, G. & Seiffert, C. 2004. An annotated taxonomic list of the Middle Eocene (MP 11) Vertebrata of Messel. Courier Forschungsinstitut Senckenberg 252, 95108.Google Scholar
Mosbrugger, V., Utescher, T. & Dilcher, D. L. 2005. Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences 102, 14964–9.Google Scholar
Mullin, S. K. & Taylor, P. J. 2002. The effects of parallax on geometric morphometric data. Computers in Biology and Medicine 32, 455464.Google Scholar
Neuffer, F. O., Gruber, G., Lutz, H. & Frankenhäuser, H. 1996. Das Eckfelder Maar - Zeuge tropischen Lebens in der Eifel. Mainz: Landessammlung für Naturkunde Rheinland-Pfalz, 101 pp.Google Scholar
Ösi, A. & Barrett, P. M. 2011. Dental wear and oral food processing in Caiman latirostris: analogue for fossil crocodylians with crushing teeth. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 261, 201207.Google Scholar
Pauwels, O. S. G., Barr, B., Sanchez, M. L. & Burger, M. 2007. Diet records for the Dwarf Crocodile, Osteolaemus tetraspis, in Rabi oil fields and Loango National Park, southwestern Gabon. Hamadryad 31, 258–64.Google Scholar
Pearcy, A. 2011. Implications of skull shape for the ecology and conservation biology of crocodiles. Ph.D. thesis, Department of Integrative Zoology, Universiteit Leiden, Leiden, The Netherlands. Published thesis.Google Scholar
Pearcy, A. & Wijtten, Z. 2010. Suggestions on photographing crocodile skulls for scientific purposes. Herpetological Review 41, 445–7.Google Scholar
Pianka, E. R. 1994. Comparative ecology of Varanus in the Great Victoria Desert. Australian Journal of Ecology 19, 395408.Google Scholar
Pierce, S. E., Angielczyk, K. D. & Rayfield, E. J. 2008. Patterns of morphospace occupation and mechanical performance in extant crocodilian skulls: a combined geometric morphometric and finite element modeling approach. Journal of Morphology 269, 840–64.Google Scholar
Pierce, S. E., Angielczyk, K. D. & Rayfield, E. J. 2009. Shape and mechanics in thalattosuchian (Crocodylomorpha) skulls: implications for feeding behaviour and niche partitioning. Journal of Anatomy 215, 555–76.Google Scholar
Piras, P., Buscalioni, A. D., Teresi, L., Raia, P., Sansalone, G., Kotsakis, T. & Cubo, J. 2014. Morphological integration and functional modularity in the crocodilian skull. Integrative Zoology 9, 498516.CrossRefGoogle ScholarPubMed
Piras, P., Colangelo, P., Adams, D. C., Buscalioni, A., Cubo, J., Kotsakis, T., Meloro, C. & Raia, P. 2010. The Gavialis-Tomistoma debate: the contribution of skull ontogenetic allometry and growth trajectories to the study of crocodylian relationships. Evolution & Development 12, 568–79.Google Scholar
Piras, P., Luciano Teresi, L. Buscalioni, A. D. & Cubo, J. 2009. The shadow of forgotten ancestors differently constrains the fate of Alligatoroidea and Crocodyloidea. Global Ecology and Biogeography 18, 3040.CrossRefGoogle Scholar
Platt, S. G., Rainwater, T. R., Thorbjarnarson, J. B., Finger, A. G., Anderson, T. A. & McMurry, S. T. 2009. Size estimation, morphometrics, sex ratio, sexual size dimorphism, and biomass of Morelet's crocodile in northern Belize. Caribbean Journal of Science 45, 8093.Google Scholar
Polly, P. D., Lawing, A. M., Fabre, A.-C. & Goswami, A. 2013. Phylogenetic principal components analysis and geometric morphometrics. Hystrix, the Italian Journal of Mammalogy 24, 3341.Google Scholar
Prasad, G. V. R. & de Lapparent de Broin, F. 2002. Late Cretaceous crocodile remains from Naskal (India): comparisons and biogeographic affinities. Annales de Paléontologie 88, 1971.Google Scholar
Rauhe, M. & Rossmann, T. 1995. News about fossil crocodiles from the Middle Eocene of Messel and Geiseltal, Germany. Hallesches Jahrbuch für Geowissenschaften, Reihe B 17, 8192.Google Scholar
Rohlf, F. J. 1993. Relative warp analysis and an example of its application to mosquito. Contributions to morphometrics 8, 131–60.Google Scholar
Ross, C. A. 1989. Crocodiles and alligators. New York: Facts on File, Inc., 240 pp.Google Scholar
Rossmann, T., Rauhe, M. & Ortega, F. 2000. Studies on Cenozoic crocodiles: 8. Bergisuchus dietrichbergi Kuhn (Sebecosuchia: Bergisuchidae n. fam.) from the Middle Eocene of Germany. Paläontologische Zeitschrift, 74 379–92.Google Scholar
Sadleir, R. W. & Makovicky, P. J. 2008. Cranial shape and correlated characters in crocodilian evolution. Journal of Evolutionary Biology 21, 1578–96.CrossRefGoogle ScholarPubMed
Salas-Gismondi, R., Flynn, J. J., Baby, P., Tejada-Lara, J. V., Wesselingh, F. P. & Antoine, P. O. 2015. A Miocene hyperdiverse crocodylian community reveals peculiar trophic dynamics in proto-Amazonian mega-wetlands. Proceedings of the Royal Society of London B 282, 20142490, doi: 10.1098/rspb.2014.2490.Google Scholar
Scheyer, T. M., Aguilera, O. A., Delfino, M., Fortier, D. C., Carlini, A. A., Sánchez, R., Carillo-Briceño, J. D., Quiroz, L. & Sánchez-Villagra, M. R. 2013. Crocodylian diversity peak and extinction in the late Cenozoic of the northern Neotropics. Nature Communications 4, 1907, doi: 10.1038/ncomms2940.CrossRefGoogle ScholarPubMed
Schmidt-Kittler, N. (ed.) 1987. International Symposium on Mammalian Biostratigraphy and Paleoecology of the European Paleogene: Mainz, 18–21 February. Münchner Geowissenschaftliche Abhandlungen, Reihe A 10, 1312.Google Scholar
Sereno, P. C., Larsson, H. C. E., Sidor, C. A. & Gado, B. 2001. The giant crocodyliform Sarcosuchus from the Cretaceous of Africa. Science 294, 1516–9.Google Scholar
Slice, D. E. 2007. Geometric morphometrics. Annual Review of Anthropology 36, 261–81.Google Scholar
Sobbe, I. H., Price, G. J. & Knezour, R. A. 2013. A ziphodont crocodile from the late Pleistocene King Creek catchment, Queensland. Memoirs of the Queensland Museum-Nature 56, 601–6.Google Scholar
Soberón, R. R., Ramos, R. & Barr, B. 2001. Cuba: population survey and stomach content analysis. Crocodile Specialist Group Newsletter 20, 13.Google Scholar
Stayton, C. T. & Ruta, M. 2006. Geometric morphometrics of the skull roof of stereospondyls (Amphibia: Temnospondyli). Palaeontology 49, 307–37.Google Scholar
Stevenson, C. & Whitaker, R. 2010. Indian Gharial, Gavialis gangeticus . In Crocodiles: Status Survey and Conservation Action Plan, Third Edition (ed Manolis, S. C. & Stevenson, C.), pp. 139–43. Darwin: Crocodile Specialist Group, International Union for the Conservation of Nature and Natural Resources.Google Scholar
Tütken, T. 2014. Isotope compositions (C, O, Sr, Nd) of vertebrate fossils from the Middle Eocene oil shale of Messel, Germany: implications for their taphonomy and palaeoenvironment. Palaeogeography, Palaeoclimatology, Palaeoecology 416, 92109.CrossRefGoogle Scholar
Varona, L. S. 1966. Notas sobre los crocodílidos de Cuba y descripción de una nueva especie del Pleistoceno. Poeyana, Series A 16, 134.Google Scholar
Vasse, D. 1992. Un crâne d’Asiatosuchus germanicus du Lutétien d'issel (aude). Bilan sur le genre Asiatosuchus en Europe. Geobios 25, 293304.Google Scholar
Voigt, E. 1934. Die Fische aus der mitteleozänen Braunkohle des Geiseltales. Mit besonderer Berücksichtigung der erhaltenen Weichteile. Nova Acta Leopoldina, Neue Folge 2, 21146.Google Scholar
Webb, G. J. W., Manolis, S. C. & Sack, G. C. 1983. Crocodylus johnstoni and C. porosus coexisting in a tidal river. Australian Wildlife Research 10, 639–50.Google Scholar
Weidlich, M. 1987. Systematik und Taxonomie der Buprestidae des mitteleozänen Geiseltales (Insecta, Coleoptera). Hallesches Jahrbuch für Geowissenschaften 12, 2952.Google Scholar
Wilberg, E. W. 2015. What's in an outgroup? The impact of outgroup choice on the phylogenetic position of Thalattosuchia (Crocodylomorpha) and the origin of Crocodyliformes. Systematic Biology 64, 621–37.Google Scholar
Wills, M. A. 1998. Crustacean disparity through the Phanerozoic: comparing morphological and stratigraphic data. Biological Journal of the Linnean Society 65, 455500.Google Scholar
Woodward, A. R., White, J. H. & Linda, S. B. 1995. Maximum size of the alligator (Alligator mississippiensis). Journal of Herpetology 29, 507–13.Google Scholar
Young, M. T., Bell, M. A. & Brusatte, S. L. 2011 a. Craniofacial form and function in Metriorhynchidae (Crocodylomorpha: Thalattosuchia): modelling phenotypic evolution with maximum-likelihood methods. Biology Letters 7, 913–6.Google Scholar
Young, M. T., Bell, M. A., de Andrade, M. B. & Brusatte, S. L. 2011 b. Body size estimation and evolution in metriorhynchid crocodylomorphs: implications for species diversification and niche partitioning. Zoological Journal of the Linnean Society 163, 1199–216.Google Scholar
Young, M. T., Brusatte, S. L., de Andrade, M. A., Desojo, J. B., Beatty, B. L., Steel, L., Fernández, M. S., Sakamoto, M., Ruiz-Omeñaca, J. I. & Schoch, R. R. 2012. The cranial osteology and feeding ecology of the metriorhynchid crocodylomorph genera Dakosaurus and Plesiosuchus from the Late Jurassic of Europe. PLoS ONE 7 (9): e44985.Google Scholar
Young, M. T., Brusatte, S. L., Ruta, M. & de Andrade, M. B. 2010. The evolution of Metriorhynchoidea (Mesoeucrocodylia, Thalattosuchia): an integrated approach using geometric morphometrics, analysis of disparity, and biomechanics. Zoological Journal of the Linnean Society 158, 801–59.Google Scholar
Young, M. T., de Andrade, M. B., Brusatte, S. L., Sakamoto, M. & Liston, J. 2013. The oldest known metriorhynchid super-predator: a new genus and species from the Middle Jurassic of England, with implications for serration and mandibular evolution in predacious clades. Journal of Systematic Palaeontology 11, 475513.Google Scholar
Zelditch, M. L., Swiderski, D. L. & Sheets, H. D. 2012. Geometric Morphometrics for Biologists: A Primer, Second edition. New York: Academic Press, 478 pp.Google Scholar
Supplementary material: PDF

Hastings and Hellmund supplementary material S1

Supplementary Figures and Tables

Download Hastings and Hellmund supplementary material S1(PDF)
PDF 481.3 KB