Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T15:52:28.002Z Has data issue: false hasContentIssue false

Eocene raoellids (Mammalia, Cetartiodactyla) outside the Indian Subcontinent: palaeogeographical implications

Published online by Cambridge University Press:  28 July 2011

M. J. ORLIAC*
Affiliation:
Institut des Sciences de L'Evolution, UMR-CNRS 5554, Université de Montpellier II – C.C. 064, Place Eugène Bataillon, F-34095 MONTPELLIER Cedex 5, France
S. DUCROCQ
Affiliation:
Institut international de Paléoprimatologie Paléontologie Humaine: Evolution et Paléoenvironnements, UMR-CNRS 6046, Université de Poitiers, France
*
Author for correspondence: [email protected]

Abstract

Raoellidae are small fossil cetartiodactyls closely related to the Cetacea. Until now undisputable raoellid remains were reported only from the early Middle Eocene of the Indian Subcontinent, although this Indo-Pakistani endemism has been challenged by several recent works describing potential raoellids from Mongolia, Myanmar and China. In this contribution we address the question of raoellid taxonomic content and definition, through a revision of the dental features of the family. This work, which includes a revision of the putative raoellid material from outside Indo-Pakistan, is primarily based on a re-examination of ‘suoid’ specimens from Shanghuang (Middle Eocene, coastal China). Our results indicate that the Shanghuang material both substantiates the youngest and easternmost occurrence of Raoellidae and represents the only unquestionable record of raoellids outside the Indian Subcontinent at present. This significantly extends the geographical and chronological range of the family. The occurrence of a raoellid species in the Middle Eocene of coastal China implies that raoellids dispersed from the Indian Subcontinent to eastern Asia during Early or Middle Eocene time. This tempers classical hypotheses of Middle Eocene Indian endemism and eastern Asian provincialism.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beard, K. C, Qi, T., Dawson, M. R., Wang, B. & Li, C. 1994. A diverse new primate fauna from Middle Eocene fissure-fillings in southeastern China. Nature 368, 604–9.CrossRefGoogle ScholarPubMed
Boisserie, J.-R., Lihoreau, F., Orliac, M. J., Fisher, R., Weston, E. & Ducrocq, S. 2009. Morphology and phylogenetic relationships of the earliest known hippopotamids (Cetartiodactyla, Hippopotamidae, Kenyapotaminae). Zoological Journal of the Linnean Society 158, 325–67.CrossRefGoogle Scholar
Bremer, K. 1994. Branch support and tree stability. Cladistics 12, 177–81.Google Scholar
Clyde, W. C., Khan, I. H & Gingerich, P. D. 2003. Stratigraphic response and mammalian dispersal during initial India-Asia collision: Evidence from the Ghazij Formation, Balochistan, Pakistan. Geology 31, 1097–100.CrossRefGoogle Scholar
Coombs, W. P. Jr., & Coombs, M. C. 1977. Dentition of Gobiohyus and the reevaluation of the Heloyidae (Artiodactyla). Journal of Mammalogy 58, 291308.CrossRefGoogle Scholar
Dawson, M. R. & Wang, B. 2001. Middle Eocene Ischyromyidae (Mammalia: Rodentia) from the Shanghuang fissures, southeastern China. Annals of the Carnegie Museum of Natural History 70, 221–30.CrossRefGoogle Scholar
Dawson, M. R., Huang, X., Li, C. & Wang, B. 2003. Zelomyidae, a new family of Rodentia (Mammalia) from the Eocene of Asia. Vertebrata PalAsiatica 41, 249–70.Google Scholar
Dehm, R. & Oettingen-Spielberg, T. 1958. Paläontologische und geologische Untersuchungen im Tertiär von Pakistan. 2. Die mitteleocänen Säugetiere von Ganda Kas bei Basal in Nordwest-Pakistan. Bayerische Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, Abhandlungen 91, 154.Google Scholar
Gebo, D. L., Dagosto, M., Beard, K. C. & Ni, X. 2008. New primate hind limb elements from the Middle Eocene of China. Journal of Human Evolution 55, 9991014.CrossRefGoogle ScholarPubMed
Geisler, J. H., Theodor, J. M., Uhen, M. D. & Foss, S. E. 2007. Phylogenetic relationships of cetaceans to terrestrial artiodactyls. In The Evolution of Artiodactyls (eds Prothero, D. R. & Foss, S. E.), pp. 1931. Baltimore: Johns Hopkins University Press.Google Scholar
Geisler, J. H. & Uhen, M. 2003. Morphological support for a close relationship between hippos and whales. Journal of Vertebrate Paleontology 23, 991–6.CrossRefGoogle Scholar
Geisler, J. H. & Uhen, M. D. 2005. Phylogenetic relationships of extinct cetartiodactyls: results of simultaneous analyses of molecular, morphological, and stratigraphic data. Journal of Mammalian Evolution 12, 145–60.CrossRefGoogle Scholar
Gentry, A. W. & Hooker, J. J. 1988. The phylogeny of the Artiodactyla. In The phylogeny and classification of the tetrapods, vol 2: mammals (ed. Benton, M. J.), pp 235–72. Oxford: Clarendon Press.Google Scholar
Gingerich, P. D. 2003. Stratigraphic and micropaleontological constraints on the Middle Eocene age of the mammal-bearing Kuldana Formation of Pakistan. Journal of Vertebrate Paleontology 23, 643–51.CrossRefGoogle Scholar
Gingerich, P. D. & Russell, D. E. 1990. Dentition of early Eocene Pakicetus (Mammalia, Cetacea). Contributions from the Museum of Paleontology, University of Michigan 28, 120.Google Scholar
Gingerich, P. D., Russell, D. E., Sigogneau-Russell, D. & Hartenberger, J.-L. 1979 Chorlakkia hasani, a new Middle Eocene dichobunid (Mallalia, Artiodactyla) from the Kuldana Formation of Kohat, Pakistan. Contribution from the Museum of Paleontology, University of Michigan 25 (6), 117–24.Google Scholar
Kent, D. V. & Muttoni, G. 2008. Equatorial convergence of India and early Cenozoic climate trends. Proceedings of the National Academy of Sciences 105, 16065–70.CrossRefGoogle ScholarPubMed
Krause, D. W. & Maas, M. C. 1990. The biogeographic origins of the late Paleocene–Early Eocene mammalian immigrants to the Western Interior of North America. In Dawn of the age of mammals in the northern part of the Rocky Mountain interior, North America (eds Bown, T. M & Rose, K. D.), pp. 71105. Geological Society of America Special Paper 243.Google Scholar
Kumar, K. & Sahni, A. 1985. Eocene mammals from the Upper Subathu Group, Kashmir Himalaya, India. Journal of Vertebrate Paleontology 5, 153–68.CrossRefGoogle Scholar
MacPhee, R. D. E., Beard, K. C. & Qi, T. 1995. Significance of primate petrosal from Middle Eocene fissure-fillings at Shanghuang, Jiangsu Province, People's Republic of China. Journal of Human Evolution 29, 501–14.CrossRefGoogle Scholar
Marcot, J. D. 2007. Molecular phylogeny of terrestrial artiodactyls. In The evolution of artiodactyls (eds Prothero, D. R. & Foss, S. E.), pp. 418. Baltimore: The Johns Hopkins University Press.Google Scholar
Mattauer, M. 2002. New GPS data in China: a key for a better understanding of the Cainozoic tectonics of Asia. Comptes Rendus Geoscience 334, 809–10.CrossRefGoogle Scholar
Métais, G., Guo, J. & Beard, K. C. 2004. A new small dichobunid artiodactyl from Shanghuang (Middle Eocene, eastern China): implications for the early evolution of proto-selenodonts in Asia. In Fanfare for an uncommon paleontologist: papers in honor of Malcom C. McKenna (eds Dawson, M. R. & Lillegraven, J. A.), pp. 177197. Bulletin of the Carnegie Museum of Natural History 25.Google Scholar
Métais, G., Qi, T., Guo, J. & Beard, K. C. 2008. Middle-Eocene artiodactyls from Shanghuang Jiangsu province, Coastal China) and the diversity of basal dichobunoids in Asia. Naturwissenschaften 95, 1121–35.CrossRefGoogle ScholarPubMed
Montgelard, C., Catzeflis, F. M. & Douzery, E. 1997. Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S RNA mitochondrial sequences. Molecular Biology and Evolution 14, 550–9.CrossRefGoogle ScholarPubMed
O'Leary, M. A. & Gatesy, J. 2008. Impact of increased character sampling on the phylogeny of Cetartiodactyla (Mammalia): combined analysis including fossils. Cladistics 24, 397442.CrossRefGoogle ScholarPubMed
O'Leary, M. A. & Uhen, M. D. 1999. The time of origin of whales and the role of behavioural changes in the terrestrial aquatic transition. Paleobiology 25, 534–56.CrossRefGoogle Scholar
Orliac, M. J., Antoine, P.-O. & Ducrocq, S. 2010. Phylogenetic relationships of the family Suidae, new insights on the relationships among Suoidea. Zoologica Scripta 39, 315–30.CrossRefGoogle Scholar
Orliac, M. J., Boisserie, J.-R., MacLatchy, L. & Lihoreau, F. 2010. The earliest Hippopotamidae unveiled, new insights into hippopotamid time and place of origin. Proceedings of the National Academy of Science 107, 11871–6.CrossRefGoogle Scholar
Orliac, M. J., Guy, F., Chaimanee, Y., Jaeger, J.-J. & Ducrocq, S. In press. New remains of Egatochoerus jaegeri (Cetartiodactyla, Mammalia) from the late Eocene of Thailand. Palaeontology.Google Scholar
Pilgrim, G. E. 1940. Middle Eocene mammals from North-West India. Proceedings of the Zoological Society of London-B 110, 127–52.CrossRefGoogle Scholar
Qi, T., Beard, K. C., Wang, B., Dawson, M. R., Guo, J. & Li, C. 1996. The Shanghuang mammalian fauna, Middle Eocene of Jiangsu: history of discovery and significance. Vertebrata PalAsiatica 34, 202–14.Google Scholar
Ranga Rao, A. 1971. New mammals from the Murree (Kalakot zone) of the Himalayan foot hills near Kalakot, Jammu & Kashmir state, India. Journal of the Geological Society of India 12 (2), 124–34.Google Scholar
Ranga Rao, A. 1972. New mammalian genera and species from the Kalakot zone of the Himalayan foot hills near Kalakot, Jammu & Kashmir state, India. In Further studies on the vertebrate fauna of Kalakot, India, pp. 1–19. Special paper of the Directorate of Geology, Oil and Natural Gas Commission, Dehra Dun, India.Google Scholar
Sahni, A. & Kumar, S. K. 1971. Three new Eocene mammals from the Rajauri District, Jammu and Kashmir. Journal of the Palaeontological Society of India 16, 4153.Google Scholar
Sahni, A., Bhatia, S. B., Hartenberger, J.-L, Jaeger, J.-J., Kumar, K., Sudre, J. & Vianey-Liaud, M. 1981. Vertebrates from the Subathu formation and comments on the biogeography of Indian subcontinent during the Early Paleogene. Bulletin de la Société géologique de France 23, 689–95.CrossRefGoogle Scholar
Spaulding, M., O'Leary, M. A. & Gatesy, J. 2009. Relationships of Cetacea (Artiodactyla) among mammals: increased taxon sampling alters interpretations of key fossils and character evolution. PLoS ONE 4 (9), e7062, doi:10.1371/journal.pone.0007062, 14 pp.CrossRefGoogle ScholarPubMed
Sun, X. & Wang, P. 2005. How old is the Asian monsoon system? – palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology 222, 181222.CrossRefGoogle Scholar
Swofford, D. 1993. Phylogenetic analysis using parsimony (PAUP), version 3.1.1. Champaign, IL: Illinois Natural History Survey.Google Scholar
Theodor, J. M., Erfurt, J. & Métais, G. 2007. The earliest artiodactyls. In The evolution of Artiodactyla (eds Prothero, D. R. & Foss, S. E.), pp. 3258. Baltimore: John Hopkins University Press.Google Scholar
Theodor, J. M. & Foss, S. E. 2005. Deciduous dentitions of Eocene cebochoerid artiodactyls and cetartiodactyl relationships. Journal of Mammal Evolution 12, 161–81.CrossRefGoogle Scholar
Thewissen, J. G. M., Cooper, L. N., Clementz, M. T., Bajpai, S. & Tiwari, B. N. 2007. Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450, 1190–5.CrossRefGoogle ScholarPubMed
Thewissen, J. G. M., Gingerich, P. D. & Russell, D. E. 1987. Artiodactyla and perissodactyla (Mammalia) from the Early-Middle Eocene Kuldana formation of Kohat (Pakistan). Contribution from the Museum of Paleontology, University of Michigan 27 (10), 247–74.Google Scholar
Thewissen, J. G. M. & Hussain, S. T. 1998. Systematic review of the Pakicetidae, Early and Middle Eocene Cetacea (Mammalia) from Pakistan and India. Bulletin of the Carnegie Museum of Natural History 34, 220–38.Google Scholar
Thewissen, J. G. M., Hussain, S. T. & Arif, M. 1994. Fossil evidence for the origin of aquatic locomotion in Archaeocete whales. Science 263, 210–12.CrossRefGoogle ScholarPubMed
Thewissen, J. G. M., Russell, D. E., Gingerich, P. D. & Hussain, S. T. 1983. A new dichobunid artiodactyl (Mammalia) from the Eocene of north-west Pakistan. Dentition and classification. Proceedings Koninklijke Nederlandse Academie of Wetenschappen B 86,153–80.Google Scholar
Thewissen, J. G. M., Williams, E. M. & Hussain, S. T. 2001. Eocene mammal faunas from northern Indo-Pakistan. Journal of Vertebrate Paleontology 21, 347–66.CrossRefGoogle Scholar
Tsubamoto, T., Egi, N., Takai, M., Sein, C. & Maung, M. 2005. Middle Eocene ungulate mammals from Myanmar: A review with description of new specimens. Acta Palaeontologica Polonica 50, 117–38.Google Scholar
Tsubamoto, T., Takai, M. & Egi, N. 2004. Quantitative analyses of biogeography and faunal evolution of Middle to Late Eocene mammals in East Asia. Journal of Vertebrate Paleontology 24, 657–67.CrossRefGoogle Scholar
Vislobokova, I. A. 2004 a. A new representative of the family Raoellidae (Suiformes) from the Middle Eocene of Khaichin-Ula 2, Mongolia. Paleontological Journal 38, 220–6.Google Scholar
Vislobokova, I. A. 2004 b. Artiodactyls from the Middle Eocene of Khaichin Ula II, Mongolia.Paleontological Journal 38, 90–6.Google Scholar
Waddell, P. J., Okada, N. & Hasegawa, M. 1999. Towards resolving the interordinal relationships of placental mammals. Systematic Biology 48, 15.CrossRefGoogle ScholarPubMed
Wang, B. & Dawson, M. R. 1994. A primitive cricetid (Mammalia, Rodentia) from the Middle Eocene of Jiangsu Province, China. Annals of the Carnegie Museum of Natural History 63, 239–56.CrossRefGoogle Scholar
West, R. M. 1980. Middle Eocene large mammal assemblage with Tethyan affinities, Ganda Kas Region, Pakistan. Journal of Paleontology 54, 508–33.Google Scholar
Young, C. 1937. An early Tertiary vertebrate fauna from Yuanchü. Bulletin of the Geological Society of China 17 (3–4), 413–38.CrossRefGoogle Scholar
Zachos, J. C., Dickens, G. R. & Zeebe, R. E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–83.CrossRefGoogle ScholarPubMed
Zhou, X., Zhai, R., Gingerich, P. D. & Chen, L. 1995. Skull of a new mesonychid (Mammalia, Mesonychia) from the Late Paleocene of China. Journal of Vertebrate Paleontology 15, 387400.CrossRefGoogle Scholar
Supplementary material: File

Orliac Supplementary Appendices

Orliac Supplementary Appendices

Download Orliac Supplementary Appendices(File)
File 74.8 KB