Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T10:36:57.849Z Has data issue: false hasContentIssue false

Eo-Alpine metamorphism and the ‘mid-Miocene thermal event’ in the Western Carpathians (Slovakia): new evidence from multiple thermochronology

Published online by Cambridge University Press:  11 November 2011

MARTIN DANIŠÍK*
Affiliation:
John de Laeter Centre for Isotope Research, Applied Geology, Curtin University of Technology, GPO Box U1987, Perth WA 6845, Australia Department of Earth and Ocean Sciences, The University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
MILAN KOHÚT
Affiliation:
Dionýz Štúr State Institute of Geology, Mlynská dolina 1, 817 04 Bratislava, Slovak Republic
NOREEN J. EVANS
Affiliation:
John de Laeter Centre for Isotope Research, Applied Geology, Curtin University of Technology, GPO Box U1987, Perth WA 6845, Australia CSIRO Earth Science and Resource Engineering, ARRC, 26 Dick Perry Avenue, WA 6151, Australia
BRAD J. MCDONALD
Affiliation:
John de Laeter Centre for Isotope Research, Applied Geology, Curtin University of Technology, GPO Box U1987, Perth WA 6845, Australia CSIRO Earth Science and Resource Engineering, ARRC, 26 Dick Perry Avenue, WA 6151, Australia
*
Author for correspondence: [email protected]

Abstract

A combination of zircon (U–Th)/He (ZHe), apatite fission track (AFT) and apatite (U–Th)/He (AHe) dating methods is applied to constrain the metamorphic and exhumation history of the Tatric part of the Branisko Mountains in the Western Carpathians. ZHe ages from the basement samples prove the basement experienced a very low-grade to low-grade Eo-Alpine metamorphic overprint in mid-Cretaceous times. Miocene AFT and AHe ages found in the basement and in the Palaeogene sediments conclusively demonstrate that the Branisko Mts experienced a ‘mid-Miocene thermal event’. This thermal event had a regional character and was related to magmatic and/or burial heating that exposed the sediment and basement samples to ~ 120–130°C and ~ 100–190°C, respectively.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrusov, D. 1958. Geológia Československých Kapát I, II. Bratislava: SAV, 304 pp.Google Scholar
Árkai, P., Sassi, F. P. & Desmons, J. 2002. Towards a unified nomenclature in metamorphic petrology: 4. Very low- to low-grade metamorphic rocks. A proposal on behalf of the IUGS Subcommission on the Systematics of Metamorphic Rocks. Web version of 31.10.2002: 12 pp., available online at http://www.bgs.ac.uk/SCMR.Google Scholar
Baumgart-Kotarba, M. & Kráľ, J. 2002. Young tectonic uplift of the Tatra Mts. (fission track data and geomorphological arguments). Proceedings of the XVII Congress of the Carpathian-Balkan Geological Association, Bratislava, Slovakia, September 1st–4th, pp. 1–9; electronic supplement: http://www.geologicacarpathica.sk/special/B/Baumgart-Kotarba_Kotarba.pdf.Google Scholar
Biely, A. 1996. Explanation to Geological Map of Slovakia. Bratislava: Dionýz Štúr Publishers, 76 pp.Google Scholar
Bónová, K. & Broska, I. 2006. Granitic rocks from Branisko Mts. (Western Carpathians): geochemistry, mineralogy and tectonic implications. Geolines 20, 20–1.Google Scholar
Bónová, K., Jacko, S., Broska, I. & Siman, P. 2005. Contribution to geochemistry and geochronology of leucogranites from Branisko Mts. Mineralia Slovaca 37, 349–50 (in Slovak).Google Scholar
Burchart, J. 1972. Fission-track age determination of accessory apatite from the Tatra mountains, Poland. Earth and Planetary Science Letters 15, 418–22.CrossRefGoogle Scholar
Burtner, R. L., Nigrini, A. & Donelick, R. A. 1994. Thermochronology of Lower Cretaceous source rocks in the Idaho–Wyoming thrust belt. American Association of Petroleum Geologists Bulletin 78, 1613–36.Google Scholar
Carlson, W. D., Donelick, R. A. & Ketcham, R. A. 1999. Variability of apatite fission-track annealing kinetics: I. Experimental results. American Mineralogist 84, 1213–23.CrossRefGoogle Scholar
Csontos, L. 1995. Tertiary tectonic evolution of the Intra-Carpathian area: a review. Acta Vulcanologica 7, 113.Google Scholar
Dallmeyer, R. D., Neubauer, F., Handler, R., Fritz, H., Müller, W., Pana, D. & Putiš, M. 1996. Tectonothermal evolution of the internal Alps and Carpathians: evidence from 40Ar/39Ar mineral and whole-rock data. Eclogae Geologicae Helvetiae 89, 203–27.Google Scholar
Danišík, M., Dunkl, I., Putiš, M., Frisch, W. & Kráľ, J. 2004. Tertiary burial and exhumation history of basement highs along the NW margin of the Pannonian Basin – an apatite fission track study. Austrian Journal of Earth Sciences 95/96, 6070.Google Scholar
Danišík, M., Kadlec, J., Glotzbach, Ch., Weisheit, A., Dunkl, I., Kohút, M., Evans, N. J., Orvošová, M. & McDonald, B. J. 2011. Tracing metamorphism, exhumation and topographic evolution in orogenic belts by multiple thermochronology: a case study from the Nízke Tatry Mts., Western Carpathians. Swiss Journal of Geosciences 104, 285–98.CrossRefGoogle Scholar
Danišík, M., Kohút, M., Broska, I. & Frisch, W. 2010. Thermal evolution of the Malá Fatra Mountains (Central Western Carpathians): insights from zircon and apatite fission track thermochronology. Geologica Carpathica 61, 1927.CrossRefGoogle Scholar
Danišík, M., Kohút, M., Dunkl, I. & Frisch, W. 2008 a. Thermal evolution of the Žiar Mountains basement (Inner Western Carpathians, Slovakia) constrained by fission track data. Geologica Carpathica 59, 1930.Google Scholar
Danišík, M., Kohút, M., Dunkl, I. & Frisch, W. 2009. Fission track thremochronometry of the Veľká Fatra Mts. (Inner Western Carpathians, Slovakia): constraints on the Alpine tectonothermal evolution. 7th Meeting of the Central European Tectonic Studies Group (CETeG), Hungary, 13th–16th May 2009, Abstracts.Google Scholar
Danišík, M., Kohút, M., Dunkl, I., Hraško, Ľ. & Frisch, W. 2008 b. Apatite fission track and (U-Th)/He thermochronology of the Rochovce granite (Slovakia) – implications for thermal evolution of the Western Carpathians-Pannonian region. Swiss Journal of Geosciences 101, 225–33.CrossRefGoogle Scholar
Danišík, M., Kuhlemann, J., Dunkl, I., Székely, B. & Frisch, W. 2007. Burial and exhumation of Corsica (France) in the light of fission track data. Tectonics 26, TC1001, doi:10.1029/2005TC001938, 24 ppCrossRefGoogle Scholar
Danišík, M., Sachsenhofer, R. F., Privalov, V. A., Panova, E. A., Frisch, W. & Spiegel, C. 2008 c. Low-temperature thermal evolution of the Azov Massif (Ukrainian Shield – Ukraine) – implications for interpreting (U-Th)/He and fission track ages from cratons. Tectonophysics 456, 171–9.CrossRefGoogle Scholar
Dodson, M. H. 1973. Closure temperatures in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology 40, 259–74.CrossRefGoogle Scholar
Donelick, R. A., Ketcham, R. A. & Carlson, W. D. 1999. Variability of apatite fission-track annealing kinetics: I. Experimental results. American Mineralogist 84, 1224–34.CrossRefGoogle Scholar
Dövényi, P. & Horváth, F. 1988. A review of temperature, thermal conductivity, and heat flow data from the Pannonian Basin. In The Pannonian Basin. A study in basin evolution (eds Royden, L. H. & Horváth, F.), pp. 195–233. American Association of Petroleum Geologists Memoir 45.Google Scholar
Dunkl, I. 2002. TRACKKEY: a Windows program for calculation and graphical presentation of fission track data. Computers and Geosciences 28, 312.CrossRefGoogle Scholar
Dunkl, I. & Frisch, W. 2002. Thermochronologic constraints on the Late Cenozoic exhumation along the Alpine and West Carpathian margins of the Pannonian basin. In Neotectonics and Surface Processes: The Pannonian Basin and Alpine/Carpathian System (eds Cloething, S. A. P. L., Horváth, F., Bada, G. & Lankreijer, A. C.), pp. 135–47. EGU Stephan Mueller Special Publication, Series 3.Google Scholar
Dunkl, I. & Székely, B. 2003. Component analysis with visualization of fitting – PopShare, a freeware program for evaluation of mixed geochronological data. Geophysical Research Abstracts 5, 02657.Google Scholar
Evans, N. J., Byrne, J. P., Keegan, J. T. & Dotter, L. E. 2005. Determination of uranium and thorium in zircon, apatite, and fluorite: application to laser (U-Th)/He thermochronology. Journal of Analytical Chemistry 60, 1159–65.CrossRefGoogle Scholar
Farley, K. A. 2000. Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite. Journal of Geophysical Research 105 (B2), 2903–14.CrossRefGoogle Scholar
Farley, K. A. 2002. (U-Th)/He dating: techniques, calibrations, and applications. Reviews in Mineralogy and Geochemistry 47, 819–44.CrossRefGoogle Scholar
Farley, K. A., Wolf, R. A. & Silver, L. T. 1996. The effect of long alpha-stopping distances on (U-Th)/He ages. Geochimica et Cosmochimica Acta 60, 4223–9.CrossRefGoogle Scholar
Faryad, S. W. 1996. Petrology of amphibolites and gneisses from the Branisko crystalline complex. Mineralia Slovaca 28, 265–72.Google Scholar
Faryad, S. W. 2002. Branisko & Čierna Hora Mts – version 1. In Metamorphic Map and Database of Carpatho-Balkan-Dinaride Area (eds Dunkl, I., Balintoni, I., Frisch, W., Hoxha, L., Janák, M., Koroknai, B., Milovanovic, D., Pamić, J., Székely, B. & Vrabec, M.), http://www.met-map.uni-goettingen.de.Google Scholar
Faryad, S. W. & Dianiška, I. 2002. Ti-bearing andradite-prehnite-epidote assemblage from the Malá Fatra granodiorite and tonalite (Western Carpathians). Schweizerische Mineralogische und Petrographische Mitteilungen 83, 4756.Google Scholar
Faryad, S. W., Ivan, P. & Jacko, S. 2005. Metamorphic petrology of metabasites from the Branisko and Čierna Hora Mts. (Western Carpathians, Slovakia). Geologica Carpathica 56, 316.Google Scholar
Fitzgerald, P. G., Baldwin, S. L., Webb, L. E. & O'Sullivan, P. B. 2006. Interpretation of (U-Th)/He single grain ages from slowly cooled crustal terranes: a case study from the Transantarctic Mountains of southern Victoria Land. Chemical Geology 225, 91120.CrossRefGoogle Scholar
Frisch, W., Dunkl, I. & Kuhlemann, J. 2000. Post-collisional largescale extension in the Eastern Alps. Tectonophysics 327, 239–65.CrossRefGoogle Scholar
Fusán, O. 1963. Explanations to the General Geological Map of ČSSR 1:200.000; Sheet M-34-XXVII Vysoké Tatry. Bratislava: Geofond, 215 pp. (in Slovak).Google Scholar
Galbraith, R. 1988. Graphical display of estimates having differing standard errors. Technometrics 30, 271–81.CrossRefGoogle Scholar
Galbraith, R. F. & Laslett, G. M. 1993. Statistical models for mixed fission track ages. Nuclear Tracks and Radiation Measurements 21, 459–70.CrossRefGoogle Scholar
Gleadow, A. J. W. 1981. Fission-track dating methods: what are the real alternatives? Nuclear Tracks and Radiation Measurements 5, 1/2, 314.CrossRefGoogle Scholar
Gleadow, A. J. W., Duddy, I. R. & Green, P. F. 1986 a. Fission track lengths in the apatite annealing zone and the interpretation of mixed ages. Earth and Planetary Science Letters 78, 245–54.CrossRefGoogle Scholar
Gleadow, A. J. W., Duddy, I. R. & Green, P. F. 1986 b. Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contributions to Mineralogy and Petrology 94, 405–15.CrossRefGoogle Scholar
Gross, P. 2008. Lithostratigraphy of Western Carpathians: Paleogene – Podtatranská Group. Bratislava: Dionýz Štúr Publishing House, 78 pp. (in Slovak with English summary).Google Scholar
Gross, P., Buček, S., Ďurkovič, T., Filo, I., Maglay, J., Halouzka, R., Karoli, S., Nagy, A., Spišiak, Z., Žec, B., Vozár, J., Borza, V., Lukáčik, E., Mello, J., Polák, M. & Janočko, J. 1999. Geological Map of the Poprad and Hornád Lowlands, Levoča hills, Spiš-Šariš Intermontane, Bachurňa and Šariš Highlands 1:50.000. Bratislava: Dionýz Stúr Publishing House.Google Scholar
Gross, P., Köhler, E. & Samuel, O. 1984. New lithostratigraphic classification of the Central Carpathians Paleogene. Geologické Práce, Správy 81, 103–17 (in Slovak).Google Scholar
Harrison, T. M., Duncan, I. & McDougall, I. 1985. Diffusion of 40Ar in biotite: temperature, pressure and compositional effects. Geochimica et Cosmochimica Acta 49, 2461–8.CrossRefGoogle Scholar
Horváth, F. 1993. Towards a mechanical model for the formation of the Pannonian Basin. Tectonophysics 226, 333–57.CrossRefGoogle Scholar
Hourigan, J. K., Reiners, P. W. & Brandon, M. T. 2005. U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry. Geochimica et Cosmochimica Acta 69, 3349–65.CrossRefGoogle Scholar
Hrušecký, I., Pospíšil, L. & Kohút, M. 2002. Geological interpretation of the reflection seismic profile 753/92. In Hydrocarbon Potential of the Eastern Slovakian Basin and Adjacent Areas (ed. Hrušecký, I.), pp. 1–47. Open File Report, Geofond, Bratislava, (in Slovak).Google Scholar
Hurai, V., Świerczewska, A., Marko, F., Tokarski, A. & Hrušecký, I. 2000. Paleofluid temperatures and pressures in Tertiary accretionary prism of the Western Carpathians. Slovak Geological Magazine 6, 194–7.Google Scholar
Hurford, A. J. 1986. Cooling and uplift patterns in the Lepontine Alps South Central Switzerland and age of vertical movement on the Insubric fault line. Contributions to Mineralogy and Petrology 92, 413–27.CrossRefGoogle Scholar
Hurford, A. J. & Green, P. F. 1983. The zeta age calibration of fission-track dating. Chemical Geology 41, 285312.CrossRefGoogle Scholar
Jacko, S. 1998. Tectonometamorphic evolution of the Branisko and Čierna hora Mts. Slovak Geological Magazine 4, 137–42.Google Scholar
Janočko, J. 1993. Development of a braided delta depositional system – Lower Sarmatian, Neogene East Slovakian Basin. In Sedimentological and Paleogeographical Analysis of the East Slovakian Basin (ed. Vass, D.), pp. 1–16. Open File Report, Geofond Bratislava.Google Scholar
Kaličiak, M. & Repčok, I. 1987. Reconstruction of evolution of volcanoes in the northern part of Slanské mountain range. Mineralia Slovaca 19, 401–15 (in Slovak).Google Scholar
Károli, S. & Zlínska, A. 1988. Results of the Lithological and Microbiostratigraphical Research of the Neogene of the Košice Depression. Open File Report, Geofond, Bratislava, 33 pp. (in Slovak).Google Scholar
Kázmér, M., Dunkl, I., Frisch, W., Kuhlemann, J. & Ozsvárt, P. 2003. The Palaeogene forearc basin of the Eastern Alps and the Western Carpathians: subduction erosion and basin evolution. Journal of the Geological Society, London 160, 413–28.CrossRefGoogle Scholar
Ketcham, R. A. 2005. Forward and inverse modeling of low-temperature thermochronometry data. In Low-Temperature Thermochronology: Techniques, Interpretations, and Applications (eds Reiners, P. W. & Ehlers, T. A.), pp. 275–314. Reviews in Mineralogy and Geochemistry vol. 58.Google Scholar
Ketcham, R. A., Donelick, R. A. & Carlson, W. D. 1999. Variability of apatite fission track annealing kinetics: III. Extrapolation to geologic time scales. American Mineralogist 84, 1235–55.CrossRefGoogle Scholar
Ketcham, R. A., Carter, A., Donelick, R. A., Barbarand, J. & Hurford, A. J. 2007 a. Improved measurement of fission-track annealing in apatite using c-axis projection. American Mineralogist 92, 789–98.CrossRefGoogle Scholar
Ketcham, R. A., Carter, A., Donelick, R. A., Barbarand, J. & Hurford, A. J. 2007 b. Improved modeling of fission-track annealing in apatite. American Mineralogist 92, 799810.CrossRefGoogle Scholar
Kohút, M., Mänttäri, I., Sergeev, S., Putiš, M. & Uher, P. 2007. SHRIMP zircon U-Pb dating of tonalitic gneisses from the Branisko Mts. Mineralia Slovaca 39, Geovestník, 6.Google Scholar
Kohút, M., Sherlock, S. C., Poller, U., Konečný, P., Siman, P. & Holický, I. 2004. The indications of the Pre-Hercynian and Hercynian evolution in the Patria crystalline complex – the Branisko Mts. (Western Carpathians, Slovakia). Environmental, Structural and Stratigraphical Evolution of the Western Carpathians (ESSE WECA) Conference 2004, Electronic Abstracts, pp. 1–4.Google Scholar
Kohút, M., Uher, P., Putiš, M., Broska, I., Siman, P., Rodionov, N. & Sergeev, S. 2010. Are there any differences in age of the two principal Hercynian (I- & S-) granite types from the Western Carpathians? – A SHRIMP approach. In Dating of Minerals and Rocks, Metamorphic, Magmatic and Metallogenetic Processes, As Well As Tectonic Events (ed. Kohút, M.), pp. 17–8. Bratislava: Conferences, Symposia & Seminars ŠGÚDŠ.Google Scholar
Konečný, V., Kováč, M., Lexa, J. & Šefara, J. 2002. Neogene Evolution of the Carpatho-Pannonian Region: An interplay of subduction and back-arc diapiric uprise in the mantle. EGU Stephan Mueller Special Publication, Series 1, pp. 105–23.Google Scholar
Korikovskij, S. P., Jacko, S., Boronichin, A. A. & Šucha, V. 1992. Ilitte-paragonite layer intergrowths from the Gemericum nappe in the SE part of the Čierna Hora Mts. Veporicum (Western Carpathians). Geologica Carpathica 43, 4955.Google Scholar
Kováč, M., Anderyeva-Grigorovich, A., Bajtrakteravić, Z., Brzobohatý, R., Filipescu, S., Fodor, L., Harzhauser, M., Nagymarosy, A., Oszczypko, N., Pavelić, D., Rögl, F., Saftić, B., Sliva, L. & Studencka, B. 2007. Badenian evolution of the Central Paratethys sea: paleogeography, climate and eustatic sea level changes. Geologica Carpathica 58, 579606.Google Scholar
Kováč, M., Kováč, P., Marko, F., Karoli, S. & Janočko, J. 1995. The East Slovakian Basin – a complex back-arc basin. Tectonophysics 252, 453–66.CrossRefGoogle Scholar
Kováč, M., Kráľ, J., Márton, E., Plašienka, D. & Uher, P. 1994. Alpine uplift history of the Central Western Carpathians: geochronological, paleomagnetic, sedimentary and structural data. Geologica Carpathica 45, 8396.Google Scholar
Kráľ, J. 1977. Fission track ages of apatites from some granitoid rocks in West Carpathians. Geologický Zborník – Geologica Carpathica 28, 269–76.Google Scholar
Král, M. 1994. Geothermal characteristics of the Prešov basin and adjacent areas. In Geothermal Energy Atlas of Slovak Republic (ed. Franko, O.), pp. 1–15. Open File Report Geofond, Bratislava (in Slovak).Google Scholar
Král, M., Lisol, J. & Janáček, J. 1987. Geothermal Research in Slovakia, Report 1981–1985. Manuscript Geofyzika Brno, 186 pp. (in Slovak).Google Scholar
Král, M. & Vitáloš, R. 2003. The Prešov Depression – Geothermal water appraisal of its ability for utilization in energetic purposes in northern part depression, geological study. Open File Report Geofond, Bratislava, 24 pp. (in Slovak).Google Scholar
Krist, E., Korikovsky, S. P., Putiš, M., Janák, M. & Faryad, S. W. 1992. Geology and Petrology of Metamorphic Rocks of the Western Carpathian Crystalline Complexes. Bratislava: Comenius University Press, 324 pp.Google Scholar
Lexa, J., Konečný, V., Kaličiak, M. & Hojstričová, V. 1993. Spacetime distribution of volcanics in the Carpatho-Pannonian region. In Geodynamical Model and Deep Structure of Western Carpathians (eds M. Rakús & J. Vozár), pp. 57–70. Bratislava: Conferences, Symposia & Seminars GÚDŠ (in Slovak).Google Scholar
Lexa, J., Bezák, V., Elečko, M., Eliáš, M., Konečný, V., Less, Gy., Mandl, G. W., Mello, J., Pálenský, P., Pelikán, P., Polák, M., Potfaj, M., Radocz, Gy., Rylko, W., Schnabel, G. W., Stráník, Z., Vass, D., Vozár, J., Zelenka, T., Biely, A., Császár, G., Čtyroký, P., Kaličiak, M., Kohút, M., Kovacs, S., Mackiv, B., Maglay, J., Nemčok, J., Nowotný, A., Pentelényi, L., Rakús, M. & Vozárová, A. 2000. Geological map of Western Carpathians and Adjacent Areas 1: 500,000. Issued by Ministry of the Environment of Slovak Republic Geological Survey of Slovak Republic, Bratislava.Google Scholar
Madarás, J., Hók, J., Siman, P., Bezák, V., Ledru, P. & Lexa, O. 1996. Extension tectonics and exhumation of crystalline basement of the Veporicum unit (Central Western Carpathians). Slovak Geological Magazine 3–4, 179–83.Google Scholar
Maheľ, M. 1986. Geological Structure of the Czechoslovak Carpathians. Paleoalpine units. Bratislava: Veda, 496 pp.Google Scholar
McDougall, I. & Harrison, T. M. 1988. Geochronology and Thermochronology by the 40Ar/39Ar Method. New York: Oxford University Press, 212 pp.Google Scholar
Méres, Š., Ivan, P. & Hovorka, D. 2000. Garnet-pyroxene metabasite and antigorite serpentinites- evidence of leptino-amphibolite complex in the Branisko Mts. (Tatric unit, central eastern Carpathians). Mineralia Slovaca 32, 479–86.Google Scholar
Mořkovský, M. & Lukáčová, R. 1986. Tectonogenesis of the SE part of the East Slovakian Basin. Mineralia Slovaca l8, 421–33 (in Czech).Google Scholar
Mořkovský, M. & Lukáčová, R. 1991. The Geological Structure of the Eastern Margin of the Pannonian Basin in East Slovakia. Luhačovice: Perspektívy naftového priemyslu, 12 pp. (in Czech).Google Scholar
Nemčok, M. 1993. Transition from convergence to escape: field evidence from the West Carpathians. Tectonophysics 217, 117–42.CrossRefGoogle Scholar
Pécskay, Z., Lexa, J., Szakács, A., Seghedi, J., Balogh, K., Konečný, V., Zelenka, T., Kovacs, M., Póka, T., Fülöp, A., Márton, E., Panaiotu, C. & Cvetković, V. 2006. Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geologica Carpathica 57, 511–30.Google Scholar
Plašienka, D. 2003. Development of basement-involved fold and thrust structures exemplified by the Tatric-Fatric-Veporic nappe system of the Western Carpathians (Slovakia). Geodinamica Acta 16, 2138.CrossRefGoogle Scholar
Plašienka, D. 1997. Cretaceous tectonochronology of the Central Western Carpathians (Slovakia). Geologica Carpathica 48, 99111.Google Scholar
Plašienka, D. 2006. Princípy regionalizácie geologickej stavby Malých Karpát a Považského Inovca. In Nové metódy a výsledky v geológii Západných Karpát (eds M. Kováč & K. Dubíková), pp. 51–6. Zborník 2006.Google Scholar
Plašienka, D., Grecula, P., Putiš, M., Kováč, M. & Hovorka, D. 1997. Evolution and structure of the Western Carpathians: an overview. In Geological Evolution of the Western Carpathians (eds Grecula, P., Hovorka, D. & Putiš, M.), pp. 1–24. Mineralia Slovaca – Monograph, Bratislava.Google Scholar
Polák, M., Jacko, S., Vozárová, A., Vozár, J., Gross, P., Harčár, J., Sasvári, T., Zacharov, M., Baláž, B., Liščák, P., Malík, P., Zakovič, M., Karoli, S. & Kaličiak, M. 1997. Explanations to Geological Map of the Branisko and Čierna Hora, 1:50 000. Bratislava: Dionýz Stúr Publishing House, 201 pp. (in Slovak with English summary).Google Scholar
Putiš, M., Frank, W., Plašienka, D., Siman, P., Sulák, M. & Biroň, A. 2009. Progradation of the Alpidic Central Western Carpathians orogenic wedge related to two subductions: constrained by 40Ar/39Ar ages of white micas. Geodinamica Acta 22, 5580.CrossRefGoogle Scholar
Ratschbacher, L., Frisch, W., Linzer, H.-G. & Merle, O. 1991 a. Lateral extrusion in the eastern Alps, 2, Structural analysis. Tectonics 10, 257–71.CrossRefGoogle Scholar
Ratschbacher, L., Merle, O., Davy, P. & Cobbold, P. 1991 b. Lateral extrusion in the Eastern Alps. 1. Boundary conditions and experiments scaled for gravity. Tectonics 10, 245–56.CrossRefGoogle Scholar
Reiners, P. W. 2005. Zircon (U-Th)/He thermochronometry. In Low-Temperature Thermochronology: Techniques, Interpretations, and Applications (eds Reiners, P. W. & Ehlers, T. A.), pp. 151–76. Reviews in Mineralogy and Geochemistry vol. 58.Google Scholar
Reiners, P. W., Spell, T. L., Nicolescu, S. & Zanetti, K. A. 2004. Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochimica et Cosmochimica Acta 68, 1857–87.CrossRefGoogle Scholar
Repčok, I., Kaličiak, M. & Bacsó, Z. 1988. Age of some volcanic rocks of Eastern Slovakia based on the method of Uranium fission tracks. Západné Karpaty, Séria Mineralógia, Petrografia, Geochémia, Metalogenéza 11, 7588 (in Slovak).Google Scholar
Rösing, F. 1947. Die geologische Verhältnisse des Branisko-Gebirges und Čierna hora (Karpaten). Zeitschrift der Deutchen Geologischen Gesselschaft 99, 839.CrossRefGoogle Scholar
Royden, L. H., Horváth, F. & Burchfiel, B. C. 1982. Transform faulting, extension, and subduction in the Carpathian Pannonian region. Geological Society of America Bulletin 93, 717–25.2.0.CO;2>CrossRefGoogle Scholar
Royden, L. H., Horváth, F., Nagymarosy, A. & Stegena, L. 1983. Evolution of the Pannonian basin system: 2. Subsidence and thermal history. Tectonics 2, 91137.CrossRefGoogle Scholar
Rudinec, R. 1978. Paleogeographical, lithofacial and tectonic development of the Neogene in eastern Slovakia and its relation to volcanism and deep tectonic. Geologický Zborník – Geologica Carpathica 29, 225–40.Google Scholar
Rudinec, R. 1989. New view onto the development of the Transcarpathian depression during the Neogene. Mineralia Slovaca 21, 2742.Google Scholar
Sachsenhofer, R. F. 1994. Petroleum generation and migration in the Styrian Basin (Pannonian Basin system, Austria): an integrated organic geochemical and numeric modelling study. Marine and Petroleum Geology 11, 684701.CrossRefGoogle Scholar
Sachsenhofer, R. F., Dunkl, I., Hasenhüttl, Ch. & Jelen, B. 1998. Miocene thermal history of the southwestern margin of the Styrian Basin: vitrinite reflectance and fission-track data from the Pohorje/Kozjak area (Slovenia). Tectonophysics 297, 1729.CrossRefGoogle Scholar
Slávik, J. 1968. Chronology and tectonic background of the Neogene volcanism in Eastern Slovakia. Geologické Práce, Správy 44–45, 199214.Google Scholar
Slávik, J., Bagdasarjan, G. P., Kaličiak, M., Tözsér, J., Orlický, O. & Vass, D. 1976. Radiometric ages of volcanic rocks in the Vihorlat and Slanské mountain ranges. Mineralia Slovaca 8, 319–34 (in Russian with English summary).Google Scholar
Sperner, B., Ratschbacher, L. & Nemčok, M. 2002. Interplay between subduction retreat and lateral extrusion: tectonics of the Western Carpathians. Tectonics 21, 124.CrossRefGoogle Scholar
Soták, J. 1998. Sequence stratigraphy approach to the Central Carpathian Paleogene (Eastern Slovakia): eustasy and tectonics as controls of deep-sea fan deposition. Slovak Geological Magazine 4, 185–90.Google Scholar
Struzik, A., Zattin, M. & Anczkiewicz, R. 2002. Timing of uplift and exhumation of the Polish Western Carpathians. Geotemas 4, 151–4.Google Scholar
Szabó, Cs., Harangi, S. & Csontos, L. 1992. Review of Neogene and Quaternary volcanism of the Carpathian Pannonian Region. Tectonophysics 208, 243–56.CrossRefGoogle Scholar
Tari, G., Dövényi, P., Dunkl, I., Horváth, F., Lenkey, L., Stefanescu, M., Szafián, P. & Tóth, T. 1999. Lithospheric structure of the Pannonian basin derived from seismic, gravity and geothermal data. In The Mediterranean Basins: Tertiary extension within the Alpine Orogen (eds B. Durand, L. Jolivet, F. Horváth & M. Séranne), pp. 215–50. Geological Society of London, Special Publication no. 156.Google Scholar
Tari, G., Horváth, F. & Rumpler, J. 1992. Styles of extension in the Pannonian Basin. Tectonophysics 208, 203–19.CrossRefGoogle Scholar
Vass, D. & Čverčko, J. 1985. Neogene lithostratigraphic units in the East Slovakian Lowlands. Geologické Práce, Správy 82, 111–26 (in Slovak).Google Scholar
Vass, D., Konečný, V. & Šefara, J. 1979. Geology of Ipeľská Kotlina Depression and Krupinská Planina Mts. Bratislava: Manuscript GÚDŠ, 227 pp. (in Slovak with English abstract).Google Scholar
Vass, D., Tözsér, J., Bagdasarjan, G. P., Kaličiak, M., Orlický, O. & Ďurica, D. 1978. Chronology of volcanic activity in Eastern Slovakia in the light of isotopic and paleomagnetic studies. Geologické Práce, Správy 71, 7788 (in Slovak with English summary).Google Scholar
Vozárová, A. & Vozár, J. 1986. Correlation of Tectonic Units in the Branisko Mts. Based on the Knowledge of Crystalline Complex and Upper Paleozoic Rocks. Bratislava: Report of GÚDŠ, 26 pp.Google Scholar
Vozárová, A. & Vozár, J. 1988. Late Paleozoic in the Western Carpathians. Bratislava: Manuscript GÚDŠ, 234 pp.Google Scholar
Vozárová, A. 1993. Pressure-temperature conditions of metamorphism in the northern part of the Branisko crystalline complex. Geologica Carpathica 44, 219–32.Google Scholar
Wagner, G. A. & Van den haute, P. 1992. Fission-Track Dating. Stuttgart: Enke Verlag, 285 pp.CrossRefGoogle Scholar
Wolf, R. A., Farley, K. A. & Kass, D. M. 1998. Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer. Chemical Geology 148, 105–14.CrossRefGoogle Scholar
Wortel, M. J. R. & Spakman, W. 2000. Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290, 1910–17.CrossRefGoogle ScholarPubMed
Zlínska, A. 1992. Zur biostratigraphischen Gliederung des Neogens des Ostslowakischen Beckens. Geologické Práce, Správy 96, 51–7.Google Scholar
Žec, B. & Ďurkovičová, J. 1993. Chronostratigraphy of selected volcanic formations in the southern part of Slanské vrchy Mts. Mineralia Slovaca 25, 109–16.Google Scholar