Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T13:18:43.099Z Has data issue: false hasContentIssue false

Effects of fluid flow, cooling and deformation as recorded by 40Ar/39Ar, Rb–Sr and zircon fission track ages in very low- to low-grade metamorphic rocks in Avalonian SE Cape Breton Island (Nova Scotia, Canada)

Published online by Cambridge University Press:  11 November 2014

ARNE P. WILLNER*
Affiliation:
Institut für Mineralogie und Kristallchemie, Universität Stuttgart, Azenbergstr. 18, 70174 Stuttgart, Germany Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität, 44780 Bochum, Germany
SANDRA M. BARR
Affiliation:
Department of Earth and Environmental Science, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada
JOHANNES GLODNY
Affiliation:
Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, D-14473 Potsdam, Germany
HANS-JOACHIM MASSONNE
Affiliation:
Institut für Mineralogie und Kristallchemie, Universität Stuttgart, Azenbergstr. 18, 70174 Stuttgart, Germany
MASAFUMI SUDO
Affiliation:
Institut für Erd- und Umweltwissenschaften, Universität Potsdam, Karl-Liebknecht-Str. 24, D-14476 Potsdam-Golm, Germany
STUART N. THOMSON
Affiliation:
Department of Geosciences, University of Arizona, 1040 E. 4th St, Tucson, AZ 85721-0077, USA
CEES R. VAN STAAL
Affiliation:
Geological Survey of Canada, 625 Robson Street, Vancouver, BC V6B 5J3, Canada
CHRIS E. WHITE
Affiliation:
Nova Scotia Department of Natural Resources, PO Box 698, Halifax, Nova Scotia B3J 2T9, Canada
*
Author for correspondence: [email protected]

Abstract

40Ar/39Ar in situ UV laser ablation of white mica, Rb–Sr mineral isochrons and zircon fission track dating were applied to determine ages of very low- to low-grade metamorphic processes at 3.5±0.4 kbar, 280±30°C in the Avalonian Mira terrane of SE Cape Breton Island (Nova Scotia). The Mira terrane comprises Neoproterozoic volcanic-arc rocks overlain by Cambrian sedimentary rocks. Crystallization of metamorphic white mica was dated in six metavolcanic samples by 40Ar/39Ar spot age peaks between 396±3 and 363±14 Ma. Rb–Sr systematics of minerals and mineral aggregates yielded two isochrons at 389±7 Ma and 365±8 Ma, corroborating equilibrium conditions during very low- to low-grade metamorphism. The dated white mica is oriented parallel to foliations produced by sinistral strike-slip faulting and/or folding related to the Middle–Late Devonian transpressive assembly of Avalonian terranes during convergence and emplacement of the neighbouring Meguma terrane. Exhumation occurred earlier in the NW Mira terrane than in the SE. Transpression was related to the closure of the Rheic Ocean between Gondwana and Laurussia by NW-directed convergence. The 40Ar/39Ar spot age spectra also display relict age peaks at 477–465 Ma, 439 Ma and 420–428 Ma attributed to deformation and fluid access, possibly related to the collision of Avalonia with composite Laurentia or to earlier Ordovician–Silurian rifting. Fission track ages of zircon from Mira terrane samples range between 242±18 and 225±21 Ma and reflect late Palaeozoic reburial and reheating close to previous peak metamorphic temperatures under fluid-absent conditions during rifting prior to opening of the Central Atlantic Ocean.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abati, J., Aghzer, A.M., Gerdes, A. & Ennih, N. 2012. Insights on the crustal evolution of the West African Craton from Hf isotopes in detrital zircons from the Anti-Atlas belt. Precambrian Research 183, 263–74.Google Scholar
Barr, S. M. 1993. Geochemistry and tectonic setting of late Precambrian volcanic and plutonic rocks in southeastern Cape Breton Island, Nova Scotia. Canadian Journal of Earth Science 30, 1147–54.Google Scholar
Barr, S. M., Dunning, G. R., Raeside, R. P. & Jamieson, R. A. 1990. Contrasting U-Pb ages from plutons in the Bras d’Or and Mira terranes of Cape Breton Island, Nova Scotia. Canadian Journal of Earth Science 27, 1200–8.CrossRefGoogle Scholar
Barr, S. M., Grammatikopoulos, A. L. & Dunning, G. R. 1994. Early Carboniferous gabbro and basalt in the St. Peters area, southern Cape Breton Island, Nova Scotia. Atlantic Geology 30, 247–58.CrossRefGoogle Scholar
Barr, S. M. & Macdonald, A. S. 1992. Devonian plutons in southeastern Cape Breton Island, Nova Scotia. Atlantic Geology 28, 101–13.CrossRefGoogle Scholar
Barr, S. M. & Raeside, R. P. 1989. Tectonostratigraphic terranes in Cape Breton Island, Nova Scotia. Implications for the configuration of the northern Appalachian Orogen. Geology 17, 822–5.Google Scholar
Barr, S. M., White, C. E., Hames, W. E. & Reynolds, P. H. 2014. Age and provenance of detrital muscovite from the Ediacaran-Cambrian boundary zone in Atlantic Canada: Implications for the paleogeographic position of Avalonia. GAC-MAC Conference Fredericton, Program with Abstracts 37, 1819.Google Scholar
Barr, S. M., White, C. E. & Macdonald, A. S. 1996. Stratigraphy, tectonic setting, and geologic history of Late Precambrian volcanic-sedimentary-plutonic belts in southeastern Cape Breton Island, Nova Scotia. Geological Survey of Canada Bulletin 468, 84 pp.Google Scholar
Beard, B. L., Medaris, L. G. Jr., Johnson, C. M., Jelinek, E., Tonika, J. & Riciputi, L. R. 1995. Geochronology and geochemistry of eclogites from the Mariánské Lázně Complex, Czech Republic: Implications for Variscan orogenesis. Geologische Rundschau 84, 552–67.Google Scholar
Bevier, M. L., Barr, S. M., White, C. E. & Macdonald, A. S. 1993. U-Pb geochronologic constraints on the volcanic evolution of the Mira (Avalon) terrane, southeastern Cape Breton Island, Nova Scotia. Canadian Journal of Earth Science 30, 110.CrossRefGoogle Scholar
Boehner, R. C., Adams, G. C. & Giles, P. S. 2002. Karst geology in the salt-bearing Windsor Group evaporites and controls on the origin of gypsum deposits in south-central Cape Breton Island, Nova Scotia. Mineral Resources Branch, Nova Scotia Department of Natural Resources, Report of Activities 2003–1, 9–24.Google Scholar
Brix, M. R., Stöckhert, B., Seidel, E., Theye, T., Thomson, S. N. & Küster, M. 2002. Thermobarometric data from a fossil zircon partial annealing zone in high pressure-low temperature rocks of eastern and central Crete, Greece. Tectonophysics 349, 309–26.CrossRefGoogle Scholar
Cohen, K. M., Finney, S. & Gibbard, P. L. 2013. International Chronostratigraphic Chart, Version 01/2013. International Commision on Stratigraphy.Google Scholar
Díez Fernández, R., Foster, D. A., Gómez Barreiro, J. & Alonso-García, M. 2013. Rheological control on the tectonic evolution of a continental suture zone: the Variscan example from NW Iberia (Spain). International Journal of Earth Science 102, 1305–19.Google Scholar
Díez Fernández, R., Martínez Catalán, J. R., Arenas, R. & Abati, J. 2011. Tectonic evolution of a continental subduction-exhumation channel: Variscan structure of the basal allochthonous units in NW Spain. Tectonics 30, TC3009, 3001–22.Google Scholar
Dunn, A. M., Reynolds, P. H., Clarke, D. B. & Ugidos, J. M. 1998. A comparison of the age and composition of the Shelburne dyke, Nova Scotia, and the Messejana dyke, Spain. Canadian Journal of Earth Sciences 35, 1110–5.Google Scholar
Fielitz, W. & Mansy, J.-L. 1999. Pre- and synorogenic burial metamorphism in the Ardennes and neighbouring areas (Rhenohercynian zone, central European Variscides). Tectonophysics 309, 227–56.Google Scholar
Freeman, S. R., Butler, R. W. H., Cliff, R. A. & Rex, D. C. 1998. Direct dating of mylonite evolution: a multi-disciplinary geochronological study from the Moine Thrust Zone, NW Scotland. Journal of the Geological Society, London 155, 745–58.Google Scholar
Galbraith, R. F. & Laslett, G. M. 1993. Statistical models for mixed fission track ages. Nuclear Tracks and Radiation Measurements 21, 459–70.CrossRefGoogle Scholar
Gibling, M. R., Culshaw, N., Rygel, M. C. & Pascucci, V. 2008. The Maritimes basin of Atlantic Canada: basin creation and destruction in the collisional zone of Pangea. Sedimentary Basins of the World 5, 211–44.CrossRefGoogle Scholar
Giles, P. S., Naylor, R. D., Teniere, P. J., White, C. E., Barr, S. M., DeMont, G. J. & Force, E. R. 2010. Bedrock geology map of the Port Hawkesbury area, Part of NTS Sheets 11F/06, 11F/07, 11F/10, 11F/11 and 11F/15, Inverness, Richmond, Guysborough, and Antigonish Counties, Nova Scotia (scale 1:50 000). Nova Scotia Department of Natural Resources, Mineral Resources Branch, Open File Map Me 2010–006.Google Scholar
Glodny, J., Lohrmann, J., Echtler, H., Gräfe, K., Seifert, W., Collao, S. & Figueroa, O. 2005. Internal dynamics of a paleoaccretionary wedge: insights from combined isotope tectonochronology and sandbox modelling of the South–Central Chilean forearc. Earth and Planetary Science Letters 231, 2339.Google Scholar
Glodny, J., Ring, U. & Kühn, A. 2008. Coeval high-pressure metamorphism, thrusting, strike-slip, and extensional shearing in the Tauern Window, Eastern Alps. Tectonics 27, TC4004.Google Scholar
Green, P. F., Duddy, I. R., Laslett, G. M., Hegarty, K. A., Gleadow, A. J. W. & Lovering, J. F. 1989. Thermal annealing of fission tracks in apatite, 4. Quantitative modelling techniques and extension to geological timescales. Chemical Geology 79, 155–82.Google Scholar
Grist, A. M. & Zentilli, M. 2003. Post-Paleocene cooling in the southern Canadian Atlantic region: evidence from apatite fission track models. Canadian Journal of Earth Science 40, 1279–97.Google Scholar
Hibbard, J. P., van Staal, C. R., Rankin, D. & Williams, H. 2006. Lithotectonic map of the Appalachian orogen (north), Canada–United States of America. Geological Survey of Canada Map 2041A, scale 1:1,500,000.Google Scholar
Hurford, A. J. 1990. Standardization of fission-track dating calibration: recommended by the Fission-track Working Group of the IUGS Subcommission on Geochronology. Chemical Geology (Isotope Geoscience Section) 80, 171–8.CrossRefGoogle Scholar
Hurford, A. J. & Green, P. F. 1983. The zeta age calibration of fission-track dating. Isotope Geoscience 1, 285317.Google Scholar
Hutchinson, R. D. 1952. The Stratigraphy and Trilobite Faunas of the Cambrian Sedimentary Rocks of Cape Breton Island, Nova Scotia. Geological Survey of Canada, Memoir no. 263, 124 pp.Google Scholar
Inger, S. & Cliff, R. A. 1994. Timing of metamorphism in the Tauern Window, Eastern Alps: Rb-Sr ages and fabric formation. Journal of Metamorphic Geology 12, 695707.Google Scholar
Ishizuka, O., Yuasa, M. & Uto, K. 2002. Evidence of porphyry copper-type hydrothermal activity from a submerged remnant back-arc volcano of the Izu-Bonin arc: implication for the volcanotectonic history of backarc seamounts. Earth and Planetary Science Letters 198, 381–99.Google Scholar
Keen, C. E., MacLean, B. C. & Kay, W. A. 1991. A deep seismic reflection profile across the Nova Scotia continental margin, offshore eastern Canada. Canadian Journal of Earth Sciences 28, 1112–20.CrossRefGoogle Scholar
Kelley, S. P., Arnaud, N. O. & Turner, S. P. 1994. High spatial resolution 40Ar/39Ar investigations using an ultra-violet laser probe extraction technique. Geochimica Cosmochimica Acta 58, 3519–25.Google Scholar
Kroner, U. & Romer, R. L. 2013. Two plates - many subduction zones: the Variscan orogeny reconsidered. Gondwana Research 24, 298329.Google Scholar
Labails, C., Olivet, J. L., Aslanian, D. & Roest, W. R. 2010. An alternative early opening scenario for the Central Atlantic Ocean. Earth and Planetary Science Letters 297, 355–68.Google Scholar
Landing, E. 1991. Upper Precambrian through Lower Cambrian of Cape Breton Island: faunas, paleoenvironments, and stratigraphic revision. Journal of Paleontology 65, 570–95.Google Scholar
Ludwig, K. 2009. Isoplot v. 3.71: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, California, Special Publication 4, 70 pp.Google Scholar
Macdonald, A. S. & Barr, S. M. 1993 a. Geological setting and depositional environment of the Stirling Group of southeastern Cape Breton Island, Nova Scotia. Atlantic Geology 29, 137–47.Google Scholar
Macdonald, A. S. & Barr, S. M. 1993 b. The Blue Mountain polymetallic skarn and associated porphyry dykes, southeastern Cape Breton Island, Nova Scotia. In Mineral Deposit Studies in Nova Scotia II (ed. Sangster, A. L.), pp. 318. Geological Survey of Canada, Paper 91–9.Google Scholar
Martel, A. T. & Gibling, M. R. 1995. Stratigraphy and tectonic history of the Upper Devonian to Lower Carboniferous Horton Bluff Formation, Nova Scotia. Atlantic Geology 32, 1338.Google Scholar
Massonne, H.-J. 2005. Involvement of crustal material in delamination of the lithosphere after continent-continent collision. International Geology Review 47, 792804.Google Scholar
Massonne, H.-J. & O’Brien, P. J. 2003. The Bohemian Massif and the NW Himalaya. In Ultrahigh Pressure Metamorphism (eds Carswell, D. A. & Compagnoni, R.), pp. 145–87. EMU Notes in Mineralogy no. 5.Google Scholar
Massonne, H.-J. & Willner, A. P. 2008. Phase relations and dehydration behaviour of psammopelite and mid-ocean ridge basalt at very low-grade to low-grade metamorphic conditions. European Journal of Mineralogy 20, 867–79.Google Scholar
McDougall, I. & Harrison, T. M. 1999. Geochronology and Thermochronology by the 40Ar/39Ar Method. Oxford: Oxford University Press, 269 pp.Google Scholar
McMullin, D. W. A., Barr, S. M. & Raeside, R. P. 2010. Very low- and low-grade metamorphism of mafic volcanic rocks of the Mira terrane (Avalonia), southeastern Cape Breton Island, Nova Scotia. Atlantic Geology 46, 95126.CrossRefGoogle Scholar
Müller, W., Dallmeyer, R. D., Neubauer, F. & Thöni, M. 1999. Deformation-induced resetting of Rb/Sr and 40Ar/39Ar mineral systems in a low-grade, polymetamorphic terrane (Eastern Alps Austria). Journal of the Geological Society, London 156, 261–78.Google Scholar
Murphy, J. B. & Collins, A. S. 2008. 40Ar–39Ar white mica ages reveal Neoproterozoic/Paleozoic provenance and an Alleghanian overprint in coeval Upper Ordovician–Lower Devonian rocks of Meguma and Avalonia. Tectonophysics 461, 265–76.Google Scholar
Murphy, J. B., Fernandez-Suarez, J., Keppie, J. D. & Jeffries, T. E. 2004. Contiguous rather than discrete Paleozoic histories for the Avalon and Meguma Terranes based on detrital zircon data. Geology 32, 585–8.Google Scholar
Murphy, J. B., van Staal, C. R. & Keppie, J. D. 1999. Middle to late Paleozoic Acadian orogeny in the northern Appalachians: A Laramide-style plume-modified orogeny? Geology 27, 653–6.2.3.CO;2>CrossRefGoogle Scholar
Murphy, J. B., Waldron, J. W. F., Kontak, D. J., Pe-Piper, G. & Piper, D. J. W. 2011. Minas Fault Zone: Late Paleozoic history of an intra-continental orogenic transform fault in the Canadian Appalachians. Journal of Structural Geology 33, 312–28.CrossRefGoogle Scholar
Palacios, T., Jensen, S., Barr, S. M. & White, C. E. 2009. Acritarchs from the MacLean Brook Formation, southeastern Cape Breton Island, Nova Scotia: new data on middle Cambrian-Furongian acritarch zonation. Palaeogeography, Palaeoclimatology, Palaeoecology 273,123–41.CrossRefGoogle Scholar
Pe-Piper, G. & Jansa, L. F. 1999. Pre-Mesozoic basement rocks offshore Nova Scotia, Canada: New constraints on the accretion history of the Meguma terrane. Geological Society of America Bulletin 111, 1773–91.Google Scholar
Pe-Piper, G. & Loncarevic, B. D. 1989. Offshore continuation of Meguma terrane, southwestern Nova Scotia. Canadian Journal of Earth Sciences 26, 176–91.CrossRefGoogle Scholar
Potter, J., Longstaffe, F. J. & Barr, S. M. 2008. Regional 18O-depletion of Neoproterozoic igneous rocks from Avalonia, Cape Breton Island and southern New Brunswick, Canada. Geological Society of America Bulletin 120, 347–67.Google Scholar
Potter, J., Longstaffe, F. J., Barr, S. M., Thompson, M. D. & White, C. E. 2008. Altering Avalonia: oxygen isotopes and terrane distinction in the Appalachian peri-Gondwanan realm. Canadian Journal of Earth Science 45, 815–25.Google Scholar
Raeside, S. M. & Barr, S. M. 1990. Geology and tectonic development of the Bras d’Or suspect terrane, Cape Breton Island, Nova Scotia. Canadian Journal of Earth Sciences 27, 1371–81.CrossRefGoogle Scholar
Rahn, M. K., Brandon, M. T., Batt, G. E. & Garver, J. I. 2004. A zero-damage model for fission-track annealing in zircon. American Mineralogist 89, 473–84.Google Scholar
Ravenhurst, C. E., Donelick, R., Zentilli, M., Reynolds, P. H. & Beaumont, C. 1990. A fission track pilot study of thermal effects of rifting on the onshore Nova Scotian margin, Canada. Nuclear Tracks Radiation Measurements 17, 373–8.Google Scholar
Ravenhurst, C. E., Reynolds, P. H., Zentilli, M., Krueger, H. W. & Blenkinsop, J. 1989. Formation of Carboniferous Pb-Zn and barite mineralization from basin-derived fluids, Nova Scotia, Canada. Economic Geology 84, 1471–88.Google Scholar
Reynolds, P. H., Barr, S. M. & White, C. E. 2009. Provenance of detrital muscovite in Cambrian Avalonia of Maritime Canada: 40Ar/39Ar ages and chemical compositions. Canadian Journal of Earth Sciences 46, 169–80.Google Scholar
Ring, U., Brandon, M. T., Willett, S. D. & Lister, G. S. 1999. Exhumation processes. In Exhumation Processes: Normal Faulting, Ductile Flow and Erosion (eds Ring, U., Brandon, M. T., Lister, G. S. & Willett, S. D.), pp. 127. Geological Society of London, Special Publication no. 154.Google Scholar
Ryan, R. J. & Zentilli, M. 1993. Allocyclic and thermochronological constraints on the evolution of the Maritimes Basin of eastern Canada. Atlantic Geology 29, 187–97.Google Scholar
Sanford, B. V. & Grant, A. C. 1990. Bedrock geological mapping and basin studies in the Gulf of St. Lawrence. Current research, part B. Geological Survey of Canada, Paper 90–1B, 3342.Google Scholar
Stampfli, G. M. & Borel, G. D. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters 196, 1733.Google Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.Google Scholar
Stosch, H.-G. & Lugmair, G. W. 1990. Geochemistry and evolution of MORB-type eclogites from the Münchberg Massif, southern Germany. Earth and Planetary Science Letters 99, 230–49.Google Scholar
Tagami, T., Galbraith, R. F., Yamada, R. & Laslett, G. M. 1998. Revised annealing kinetics of fission tracks in zircon and geological implications. In Advances in Fission-Track Geochronology (eds Van den Haute, P. & De Corte, F.), pp. 99112. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Thomson, S. N. & Ring, U. 2006. Thermochronologic evaluation of postcollision extension in the Anatolide Orogen, western Turkey. Tectonics 25, TC3005, doi: 10.1029/2005TC001833.Google Scholar
Thomson, S. N., Stoeckhert, B. & Brix, M. R. 1998. Thermochronology of the high-pressure metamorphic rocks of Crete, Greece: implications for the speed of tectonic processes. Geology 26, 259–62.Google Scholar
Uto, K., Ishizuka, O., Matsumoto, A., Kamioka, H. & Togashi, S. 1997. Laser-heating 40Ar/39Ar dating system of the Geological Survey of Japan: system outlines and preliminary results. Bulletin of the Geological Survey of Japan 48, 2346.Google Scholar
van Staal, C. R. 2007. Pre-Carboniferous tectonic evolution and metallogeny of the Canadian Appalachians. In Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods (ed. Goodfellow, W. D.), pp. 793818. Geological Association of Canada, Mineral Deposits Division, Special Publication no. 5.Google Scholar
van Staal, C. R. & Barr, S. M. 2012. Lithospheric architecture and tectonic evolution of the Canadian Appalachians and associated Atlantic margin. Chapter 2 In Tectonic Styles in Canada: the LITHOPROBE Perspective (eds Percival, J. A., Cook, F. A. & Clowes), pp. 4195. Geological Association of Canada, Special Paper no. 49.Google Scholar
van Staal, C. R., Whalen, J. B., Valverde-Vaquero, P., Zagorevski, A. & Rogers, N. 2009. Pre-Carboniferous, episodic accretion-related, orogenesis along the Laurentian margin of the northern Appalachians. In Ancient Orogens and Modern Analogues (eds Murphy, J. B., Keppie, J. D. & Hynes, A. J.), pp. 271316. Geological Society London, Special Publication no. 327.Google Scholar
Vermeesch, P. 2009. RadialPlotter: a Java application for fission track, luminescence and other radial plots. Radiation Measurements 44, 409–10.Google Scholar
Villa, I. M. 1998. Isotopic closure. Terra Nova 10, 42–7.Google Scholar
Villa, I. M. 2006. From nanometer to megameter: Isotopes, atomic-scale processes, and continent-scale tectonic models. Lithos 87, 155–73.CrossRefGoogle Scholar
von Quadt, A. & Gebauer, D. 1993. Sm-Nd and U-Pb dating of eclogites and granulites from the Oberpfalz, NE Bavaria, Germany. Chemical Geology 109, 317–39.Google Scholar
Waldron, J. W. F., Schofield, D. I., White, C. E. & Barr, S. M. 2011. Cambrian successions of the Meguma Terrane, Nova Scotia, Canada, and Harlech Dome, North Wales, UK: dispersed fragments of a peri-Gondwanan basin? Journal of the Geological Society, London 168, 8398.CrossRefGoogle Scholar
Waldron, J. W. F., White, C. E., Barr, S. M., Simonetti, A. & Heaman, L. M. 2009. Provenance of the Meguma terrane, Nova Scotia: rifted margin of early Paleozoic Gondwana. Canadian Journal of Earth Sciences 46, 18.Google Scholar
White, C. E. & Barr, S. M. 1998. Stratigraphy and tectonic significance of the Lower to Middle Devonian McAdams Lake Formation, Cape Breton Island, Nova Scotia. Atlantic Geology 34, 133–45.Google Scholar
White, C. E. & Barr, S. M. 2012. The new Meguma: stratigraphy, metamorphism, paleontology and provenance. Field Trip B-5, Geological Association of Canada and Mineralogical Association of Canada, 68 pp.Google Scholar
White, C. E., Barr, S. M. & Ketchum, J. W. F. 2003. New age controls on rock units in pre-Carboniferous basement blocks in southwestern Cape Breton Island and adjacent mainland Nova Scotia. Nova Scotia Department of Natural Resources, Minerals and Energy Branch, Report of Activities 2002, Report ME 2003–1, 163–78.Google Scholar
White, C. E., Barr, S. M., Reynolds, P. H., Grace, E. & McMullin, D. W. A. 2006. The Pocologan Metamorphic Suite: High-pressure metamorphism in a Silurian fore-arc complex, Kingston Terrane, southern New Brunswick. Canadian Mineralogist 44, 905–27.Google Scholar
Wijbrans, J. R. & McDougall, I. 1986. 40Ar/39Ar dating of white micas from an Alpine high-pressure belt on Naxos (Greece): resetting of the argon isotopic system. Contributions to Mineralogy and Petrology 93, 187–94.Google Scholar
Willner, A. P., Gerdes, A., Massonne, H.-J., Barr, S. M. & White, C. E. 2013 a. Origin and crustal evolution of the Avalonian microcontinent: evidence from a U-Pb and Lu-Hf isotope study of detrital zircon in Nova Scotia, Canada, and East Belgium. Journal of the Geological Society, London 170, 769–84.Google Scholar
Willner, A. P., Massonne, H.-J., Barr, S. M. & White, C. E. 2013 b. Very low- to low-grade metamorphic processes related to the collisional assembly of Avalonia in SE Cape Breton Island (Nova Scotia, Canada). Journal of Petrology 54, 1849–74.Google Scholar
Willner, A. P., Massonne, H.-J., Ring, U., Sudo, M. & Thomson, S. N. 2012. P–T evolution and timing of a late Palaeozoic fore-arc system and its heterogeneous Mesozoic overprint in north-central Chile (latitudes 31–32°S).Geological Magazine 149, 177207.Google Scholar
Willner, A. P., Sepúlveda, F. A., Hervé, F., Massonne, H.-J. & Sudo, M. 2009. Conditions and timing of pumpellyite-actinolite facies metamorphism in the Early Mesozoic frontal accretionary prism of the Madre de Dios Archipelago (50°20¢S; S-Chile). Journal of Petrology 50, 2127–55.Google Scholar
Willner, A. P., Thomson, S. N., Kröner, A., Wartho, J. A., Wijbrans, J. & Hervé, F. 2005. Time markers for the evolution and exhumation history of a late Palaeozoic paired metamorphic belt in central Chile (34°–35°30°S). Journal of Petrology 46, 1835–58.Google Scholar
Zeh, A. & Gerdes, A. 2010. Baltica- and Gondwana-derived sediments in the Mid-German Crystalline Rise (Central Europe): implications for the closure of the Rheic Ocean. Gondwana Research 17, 254–63.Google Scholar
Supplementary material: File

Willner Supplementary Material

Table S1

Download Willner Supplementary Material(File)
File 29.7 KB