Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T16:28:42.042Z Has data issue: false hasContentIssue false

Ediacaran events: boundary relationships and correlation of key sections, especially in ‘Armorica’

Published online by Cambridge University Press:  01 May 2009

R. J. F. Jenkins
Affiliation:
Centre for Precambrian Research, University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia

Abstract

The transitional interval between the Adelaidean and Ediacaran systems in the central Flinders Ranges, South Australia, comprises mainly basinal sediments, with some tuff beds (Bunyeroo Formation) and a widespread thin dolomite bed which apparently evidences a brief regressive episode (base of Wonoka Formation). Body imprints of metazoans, trace fossils and probable faecal pellets are present at various levels in the Ediacaran succession. Comparable assemblages occurring in key successions in southern Africa, northern Russia, Siberia, Newfoundland and England promise a global biostratigraphy. One Ediacaran body fossil occurs in the Yangtze Gorges section, China. Analysis of abundant late Precambrian radiometric data for the present North Atlantic margins suggests that the Ediacaran may be dated between about 590 Ma and ~ 545–540 Ma.

Type
Articles
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, C. J. D. 1976. Geochronology of the Channel Islands and adjacent French mainland. Journal of the Geological Society of London 132, 233–50.CrossRefGoogle Scholar
Ahrendt, H., Hunziker, J. C. & Weber, K. 1978. Age and degree of metamorphism and time of nappe emplacement along the southern margin of the Damara orogen/ Namibia (S.W. Africa). Geologische Rundschau 67, 719–42.CrossRefGoogle Scholar
Anderson, M. M. 1978. Ediacaran fauna. McGraw-Hill Yearbook of Science and Technology, 1978, 146–9.Google Scholar
Anderson, M. M., Brückner, W. D., King, A. F. & Maher, J. B. 1975. The late Proterozoic “H. D. Lilly Unconformity“ at Red Head, northeastern Avalon Peninsula, Newfoundland. American Journal of Science 275, 1012–27.CrossRefGoogle Scholar
Beckinsale, R. D. & Thorpe, R. S. 1979. Rubidium-strontium whole-rock isochron evidence for the age of metamorphism and magmatism in the Mona Complex of Anglesey. Journal of the Geological Society of London 136, 433–9.CrossRefGoogle Scholar
Beckinsale, R. D., Thorpe, R. S., Parkhurst, R. J. & Evans, J. A. 1981. Rb–Sr whole-rock isochron evidence for the age of the Malvern Hills complex. Journal of the Geological Society of London 138, 6973.Google Scholar
Branagan, D. F. 1979. History of concepts of Precambrian geology in Australia. In History of Concepts in Precambrian Geology (ed. Kupsch, W. O. & Sarjeant, W. A. S.), pp. 1332. Geological Association of Canada Special Paper no. 19. Toronto, Ontario: Hunter-Rose.Google Scholar
Brasier, M. D. & Hewitt, R. A. 1979. Environmental setting of fossiliferous rocks from the uppermost Proterozoic–lower Cambrian of central England. Palaeogeography, Palaeoclimatology, Palaeoecology 27, 3557.CrossRefGoogle Scholar
Brückner, W. D. & Anderson, M. M. 1971. Late Precambrian glacial deposits in Southeastern Newfoundland – a preliminary note. Proceedings of the Geological Association of Canada 24, 95102.Google Scholar
Cabanis, B., Michot, J. & Deutsch, S. 1977. Remise en question de la datation géochronologique des gneiss de Brest (Bretagne occidentale). Comptes rendus de l'Académic des sciences, Paris 284, séries D, 883–6.Google Scholar
Charlot, R. 1976. The Precambrian of the Anti-Atlas (Morocco): A geochronological synthesis. Precambrian Research 3, 273–99.CrossRefGoogle Scholar
Chauvel, J. J. & Mansuy, C. 1981. Micropaleontologie du Proterozoique du Massif Armoricain (France). Precambrian Research 15, 2542.Google Scholar
Chumakov, N. M. 1981. Upper Proterozoic glaciogenic rocks and their stratigraphic significance. Precambrian Research 15, 373–95.CrossRefGoogle Scholar
Clauer, N., Caby, R., Jeannette, D. & Trompette, R. 1982. Geochronology of sedimentary and metasedimentary Precambrian rocks of the West African craton. Precambrian Research 18, 5371.CrossRefGoogle Scholar
Cloud, P. 1968. Pre-metazoan evolution and the origins of the Metazoa. In Evolution and Environment (ed. Drake, E. T.), pp. 172. New Haven & London: Yale University.Google Scholar
Cloud, P. & Glaessner, M. F. 1982. The Ediacarian Period and System: Metazoa inherit the Earth. Science 217, 783–92.CrossRefGoogle ScholarPubMed
Compston, W. & Zhang, Z. C. 1983. The numerical age of the base of the Cambrian. Sixth Australian Geological Convention, Canberra 1983. Geological Society of Australia, Abstracts Series 9, 235.Google Scholar
Cope, J. C. W. 1977. An Ediacara-type fauna from South Wales. Nature, London 268, 624.Google Scholar
Cope, J. C. W. 1979. Early history of the southern margin of the Tywi anticline in the Carmarthen area, South Wales. In The Caledonides of the British Isles – reviewed (ed. Harris, A. L., Holland, C. H. & Leake, B. E.), pp. 527–32. Edinburgh: Scottish Academic Press.Google Scholar
Crimes, T. P. & Germs, G. J. B. 1982. Trace fossils from the Nama Group (Precambrian–Cambrian) of southwest Africa (Namibia). Journal of Paleontology 56, 890907.Google Scholar
Daily, B. 1972. The base of the Cambrian and the first Cambrian faunas. In Stratigraphic Problems of the Later Precambrian and Early Cambrian (ed. Jones, J. B. & McGowran, B.), pp. 1337. Centre for Precambrian Research, University of Adelaide, Special Paper no. 1. Adelaide: University of Adelaide.Google Scholar
Daily, B. 1976. The Cambrian of the Flinders Ranges. In Late Precambrian and Cambrian Geology of the Adelaide ‘Geosyncline’ and Stuart Shelf, South Australia (ed. Thomson, B. P., Daily, B., Coats, R. P. & Forbes, B. G.), pp. 1519. 25th International Geological Congress, Excursion Guide no. 33A. Canberra: Progress Press.Google Scholar
Dallmeyer, R. D. 1980. Geochronology report. In Review of activities for 1979. Mineral Development Division, Newfoundland Department of Mines and Energy, Report 80–1, 3146.Google Scholar
Dallmeyer, R. D., Odom, A. L., O'Driscoll, C. F. & Hussey, E. M. 1981. Geochronology of the Swift Current granite and host volcanic rocks of the Love Cove Group, southwestern Avalon zone, Newfoundland: evidence of a late Proterozoic volcanic – subvolcanic association. Canadian Journal of Earth Sciences 18, 699707.Google Scholar
David, T. W. E. 1922. Occurrence of remains of small Crustacea in the Proterozoic (?) or Lower Cambrian (?) rocks of Reynella, near Adelaide. Transactions of the Royal Society of South Australia 46, 68.Google Scholar
Ding, J. & Chen, Y. 1981. Discovery of soft metazoan from the Sinian System along eastern Yangtze Gorge, Hubei. Journal of the Wuhan College of Geology 2, 53–7 (in Chinese and English).Google Scholar
Duff, B. A. 1978. Rb–Sr whole-rock age determinations of the Jersey Andesite Formation, Jersey, C.I. Journal of the Geological Society of London 135, 153–6.Google Scholar
Fedonkin, M. A. 1978. New locality of non-skeletal Metazoa in Vendian of Zimniy Shore. Doklady Akademii Nauk SSSR 239, 1423–6 (in Russian).Google Scholar
Fedonkin, M. A. 1981. White Sea biota of Vendian (Precambrian non-skeletal fauna of the Russian Platform North). Akademii Nauk SSSR, Transaktiya 342. Moscow: Nauka. 99 p., (in Russian).Google Scholar
Ford, T. D. 1980. The Ediacaran fossils of Charnwood Forest, Leicestershire. Proceedings of the Geologists' Association 91, 81–3.Google Scholar
Germs, J. B. 1972 a. The stratigraphy and paleontology of the lower Nama Group, South West Africa. University of Cape Town Department of Geology, Chamber of Mines Precambrain Research Unit, Bulletin 12, 250 p.Google Scholar
Germs, J. B. 1972 b. Trace fossils from the Nama Group, South West Africa. Journal of Paleontology 46, 864–70.Google Scholar
Glaessner, M. F. 1983. The emergence of Metazoa in the early history of life. Precambrian Research 20, 427–41.CrossRefGoogle Scholar
Gostin, V. A. & Jenkins, R. J. F. 1983. Sedimentation of the Early Ediacaran, Flinders Ranges, South Australia. Sixth Australian Geological Convention, Canberra 1983. Geological Society of Australia, Abstracts Series 9, 196–7.Google Scholar
Hagstrum, J. T., van der Voo, R., Auvray, B. & Bonhommet, N. 1980. Eocambrian–Cambrian palaeomagnetism of the Armorican Massif, France. Geophysical Journal of the Royal Astronomical Society 61,489517.Google Scholar
Harland, W. B. 1974. The Pre-Cambrian-Cambrian boundary. In Cambrian of the British Isles, Norden and Spitsbergen. Vol 2, Lower Palaeozoic Rocks of the World (ed. Holland, C. H.), pp. 1542. John Wiley & Sons.Google Scholar
Harland, W. B. 1983. More time scales. Geological Magazine 120, 393400.CrossRefGoogle Scholar
Harland, W. B., Cox, A. V., Llewellyn, P. G., Pickton, C. A. G., Smith, A. G. & Walters, R. 1982. A Geologic Time Scale. Cambridge: Cambridge University Press. 131 p.Google Scholar
Harland, W. B. & Herod, K. N. 1975. Glaciations through time. In Ice ages: Ancient and Modern (ed. Wright, A. E. & Moseley, F.), pp. 189216. Geological Journal Special Issue no. 6. Seel House Press: Liverpool.Google Scholar
Hiscott, R. N. 1982. Tidal deposits of the Lower Cambrian Random Formation, eastern Newfoundland: facies and paleoenvironments. Canadian Journal of Earth Sciences 19, 2028–42.Google Scholar
Hofmann, H. J., Fritz, W. H. & Narbonne, G. M. 1983. Ediacaran (Precambrian) fossils from the Wernecke Mountains, Northwestern Canada. Science 221, 455–7.Google Scholar
Hofmann, H. J., Hill, J. & King, A. F. 1979. Late Precambrian microfossils, southeastern Newfoundland. Geological Survey of Canada Paper, Current Research 79–1B, 8398.Google Scholar
Hsu, E. 1976. Geology of St. John's Peninsula. Mineral Development Division, Province of Newfoundland Department of Mines and Energy, Report 76–1, 94101.Google Scholar
Jeannette, D., Benziane, F. & Yazidi, A. 1981. Lithostratigraphy et datation du Protérozoique de la Boutonnière d'Ifri (Anti-Atlas, Moroc). Precambrian Research 14, 363–78.CrossRefGoogle Scholar
Jenkins, R. J. F. 1981. The concept of an ‘Ediacaran Period’ and its stratigraphic significance in Australia. Transactions of the Royal Society of South Australia 105, 179–94.Google Scholar
Jenkins, R. J. F. 1984. Interpreting the oldest fossil cnidarians. Fourth International Symposium on Fossil Cnidaria (and Archeocyathids and Stromatoporoids), August 7–12, 1983, Washington D.C., U.S.A. Proceedings. In press.Google Scholar
Jenkins, R. J. F., Ford, C. H. & Gehling, J. G. 1983. The Ediacara Member of the Rawnsley Quartzite; the context of the Ediacara assemblage (late Precambrian). Journal of the Geological Society of Australia 30, 101–19.Google Scholar
Jenkins, R. J. F. & Gostin, V. A. 1983. Marinoan and Ediacaran type sections in the context of tectonic cycles in the Adelaide Geosyncline. Adelaide Geosyncline Sedimentary Environments and Tectonic Settings Symposium, Adelaide, December 9, 1983. Geological Society of Australia, Abstracts Series 10, 3944.Google Scholar
Jenkins, R. J. F., Plummer, P. S. & Moriarty, K. C. 1981. Late Precambrian pseudofossils from the Flinders Ranges, South Australia. Transactions of the Royal Society of South Australia 105, 6783.Google Scholar
Keller, B. M. & Krasnobaev, A. A. 1983. Late Precambrian geochronology of the European U.S.S.R. Geological Magazine 120, 1389.Google Scholar
Krogh, T. E. 1983. Precise U–Pb ages of zircons from volcanic and plutonic units in the Avalon Peninsula. Geological Society of America, Abstracts with Programs 15, 135.Google Scholar
Kröner, A. 1982. Rb–Sr geochronology and tectonic evolution of the Pan-African Damora Belt of Namibia, Southwestern Africa. American Journal of Science 282, 1471–507.Google Scholar
Lancelot, J. R. 1978. Géochronologie ou catastrophes. Résponse à G. Choubert et A. Faure-Muret. Compte rendu sommaire des séances de la Société géologique de France 20 (4), 211–15.Google Scholar
Leblanc, M. & Lancelot, J. R. 1980. Interprétation geodynamique du domaine pan-africain (Précambrien terminal) de l'Anti-Atlas (Maroc) à partir de données géologiques et géochronologiques. Canadian Journal of Earth Sciences 17, 142–5.Google Scholar
Mawson, D. & Sprigg, R. C. 1950. Subdivision of the Adelaide System. The Australian Journal of Science 13, 6972.Google Scholar
McCartney, W. D. 1967. Whitbourne Map-Area, Newfoundland. Geological Survey of Canada, Memoir 341, 135 p.Google Scholar
Meneisy, M. Y. & Miller, J. A. 1963. A geochronological study of the crystalline rocks of Charnwood Forest, England. Geological Magazine 100, 507–23.CrossRefGoogle Scholar
Nixon, G. T. & Papezik, V. S. 1979. Late Precambrian ash-flow tuffs and associated rocks of the Harbour Main Group near Colliers, eastern Newfoundland: chemistry and magmatic affinities. Canadian Journal of Earth Sciences 16, 167–81.Google Scholar
Odin, G. S., Gale, N. H., Auvray, B., Bielski, M., Doré, F., Lancelot, J. R. & Pasteels, P. 1983. Numerical dating of Precambrian-Cambrian boundary. Nature, London 301, 21–3.CrossRefGoogle Scholar
Papezik, V. S. 1982. Harbour Main Volcanics. In Field Guide for Avalon and Meguma Zones (ed. King, A. F.). The Caledonide Orogen IGCP Project 27, Nato Advanced Study Institute Atlantic Canada, August 1982, pp. 42–3. St. Johns, Newfoundland: Memorial University.Google Scholar
Patchett, P. J. & Jocelyn, J. 1979. U–Pb zircon ages for late Precambrian igneous rocks in South Wales. Journal of the Geological Society of London 136, 13–9.Google Scholar
Patchett, P. J., Gale, N. H., Goodwin, R. & Humm, M. J. 1980. Rb–Sr whole-rock isochron ages of late Precambrian to Cambrian igneous rocks from southern Britain. Journal of the Geological Society of London 137, 649–56.Google Scholar
Rast, N., O'Brian, B. H. & Wardle, R. J. 1976. Relationships between Precambrian and Lower Paleozoic rocks of the ‘Avalon Platform’ in New Brunswick, the northeast Appalachians and the British Isles. Tectonophysics 30,315–38.Google Scholar
Rozanov, A. Yu. & Sokolov, B. S. 1982. Precambrian–Cambrian boundary: recent state of knowledge. Precambrian Research 17, 125–31.Google Scholar
Smith, K. G. 1964. Progress report on the geology of the Huckitta 1:250,000 Sheet, Northern Territory. Australian Bureau of Mineral Resources, Geology and Geophysics, Report 67, 76 p.Google Scholar
Sokolov, B. S. 1973. Vendian of northern Eurasia. In Arctic Geology (ed. Pitcher, M. G.), pp. 204–18. American Association of Petroleum Geologists Memoir no. 19. Tulsa: Oklahoma.Google Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology; convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Tankard, A. J., Jackson, M. P. A., Eriksson, K. A., Hobday, D. K., Hunter, D. R. & Minter, W. E. L. 1982. Crustal Evolution of Southern Africa: 3.8 Billion Years of Earth History. New York: Springer-Verlag. xv + 523 p.Google Scholar
Teesdale-Smith, E. N. 1956. Lexicon of South Australian Stratigraphy. Adelaide: Geological Survey of South Australia. 83 p.Google Scholar
Termier, H. & Termier, G. 1960. L'Ediacarien, premier étage paléontologique. Revue générale des sciences pures et appliquées 67, 7987.Google Scholar
Thomson, B. P. 1969. Precambrian basement cover – the Adelaide System. In Handbook of South Australian Geology (ed. Parkin, L. W.), pp. 4983. Geological Survey of South Australia: Adelaide. 268 p.Google Scholar
Thomson, B. P., Coats, R. P., Dalgarno, C. R., Forbes, B. G., Johnson, J. E. & Mirams, R. C. 1964. Precambrian rock groups in the Adelaide Geosyncline: a new subdivision. Quarterly Geological Notes of the Geological Survey of South Australia 9, 19 p.Google Scholar
Thorpe, R. S. 1979. Late Precambrian igneous activity in southern Britain. In The Caledonides of the British Isles – reviewed (ed. Harris, A. L., Holland, C. H. & Leake, B. E.), pp. 579–84. Edinburgh: Scottish Academic Press.Google Scholar
van der Voo, R. 1982. Pre-Mesozoic paleomagnetism and plate tectonics. Annual Review of Earth and Planetary Sciences 10, 191220.Google Scholar
Vidal, P., Auvray, B., Charlot, R. & Cogne, J. 1981. Precambrian relicts in the Armorican Massif: their age and role in the evolution of the western and central European Cadomian-Hercynian belt. Precambrian Research 14, 120.Google Scholar
von der Borch, C. C., Smit, R. & Grady, A. E. 1982. Late Proterozoic submarine canyons of Adelaide Geosyncline, South Australia. American Association of Petroleum Geologists Bulletin 66, 332–47.Google Scholar
Webb, A. W., Coats, R. P., Fanning, C. M. & Flint, R. B. 1983. Geochronological framework of the Adelaide Geosyncline. Adelaide Geosyncline Sedimentary Environments and Tectonic Settings Symposium, Adelaide, December 9, 1983. Geological Society of Australia, Abstracts Series 10, 79.Google Scholar
Williams, H. 1978. Geological development of the northern Appalachians: its bearing on the evolution of the British Isles. In Crustal Evolution in Northwestern Britain and Adjacent Regions (ed. Bowles, D. R. & Leake, B. E.), pp. 122. Geological Journal Special Issue no. 10. Seel House Press: Liverpool.Google Scholar
Williams, H. & King, A. F. 1979. Trepassey map area, Newfoundland. Geological Survey of Canada Memoir 389, 24 p.Google Scholar
Wright, J. E. & Seiders, V. M. 1980. Age of zircon from volcanic rocks of the central North Carolina Piedmont and tectonic implications for the Carolina volcanic slate belt. Geological Society of America Bulletin 91, 287–94.Google Scholar
Xing, Y., Ding, Q. & Luo, H. 1982. Biotic characteristics of the Sinian–Cambrian boundary beds in China and the boundary problems. Precambrian Research 17, 7785.Google Scholar