Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T22:35:47.162Z Has data issue: false hasContentIssue false

Ecostratigraphical interpretation of lower Middle Ordovician East Baltic sections based on brachiopods

Published online by Cambridge University Press:  02 July 2009

CHRISTIAN M. Ø. RASMUSSEN*
Affiliation:
Natural History Museum of Denmark (Geological Museum), University of Copenhagen, Øster Voldgade 5–7, DK-1350 Copenhagen K, Denmark
ARNE T. NIELSEN
Affiliation:
Natural History Museum of Denmark (Geological Museum), University of Copenhagen, Øster Voldgade 5–7, DK-1350 Copenhagen K, Denmark
DAVID A. T. HARPER
Affiliation:
Natural History Museum of Denmark (Geological Museum), University of Copenhagen, Øster Voldgade 5–7, DK-1350 Copenhagen K, Denmark
*
*Author for correspondence: [email protected]

Abstract

A detailed ecostratigraphical framework is established for the lower Middle Ordovician Kundan regional stage of the East Baltic area corresponding to the Asaphus expansus, A. raniceps and A. eichwaldi trilobite zones (lower Darriwilian). The study is based on approximately 6200 brachiopods collected bed by bed from limestone sections in northern Estonia (Harku Trench and Saka) and western Russia (Putilovo Quarry, Lava River canyon and Lynna River valley) with, in addition, the first detailed systematic assessment of the Kundan brachiopods of the East Baltic. These sections represent an oblique depth transect some 400 kilometres long, deepening eastwards. Five biofacies associations have been recognized using detrended correspondence and cluster analyses: a shallow-water Lycophoria association, a transitional Gonambonites association and two deeper-water associations, the soft-substrate Orthis callactis and the hard-substrate Orthambonites associations. A separate, fifth soft-substrate association is present in the marl beds at the main locality of Putilovo Quarry. The associations reflect a combination of palaeo-water depth and substrate. The biofacies facilitate an ecostratigraphical correlation along the transect, and third and fourth order sea-level curves are reconstructed, reflecting mainly eustasy. The sea-level was relatively low, early in the Kundan, but then rose significantly into the A. raniceps Biozone. This corroborates the recent discovery of possible small early Darriwilian ice caps on Gondwana.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balashova, E. A. 1976. Sistematika trilobitov Asaphina I ikh predstaviteli v SSSR. (Systematics of Asaphine trilobites and their representatives in the USSR). Leningrad: Nedra (in Russian), 215 pp.Google Scholar
Bassett, M. G. 1984. Life strategies of Silurian brachiopods. Special Papers in Palaeontology 32, 237–63.Google Scholar
Bosence, D. W. J. & Wilson, R. C. L. 2003. Sequence Stratigraphy of carbonate depositional systems. In The Sedimentary Record of Sea-Level Change (ed. Coe, A. L.), pp. 234–56. Cambridge: Cambridge University Press.Google Scholar
Brenchley, P. J. & Harper, D. A. T. 1998. Palaeoecology: Ecosystems, environments and evolution. Chapman & Hall, 402 pp.Google Scholar
Cocks, L. R. M., McKerrow, W. S. & van Stall, C. R. 1997. The margins of Avalonia. Geological Magazine 134, 627–36.CrossRefGoogle Scholar
Dronov, A. 1997. Russian and international bryozoan conference “Bryozoa of the World”: A field excursion guide. Terra Nostra. Schriften der Alfred-Wegener-Stiftung 97/12.Google Scholar
Dronov, A. & Holmer, L. E. 1999. Depositional sequences in the Ordovician of Baltoscandia. Acta Universitatis Carolinae – Geologica 43 (1/2), 133–6.Google Scholar
Egerquist, E. 1999. Early Ordovician (Billingen-Volkhov stages) Brachiopod Faunas from the NW Russia. Acta Universitatis Carolinae – Geologica 43 (1/2), 341–3.Google Scholar
Eichwald, E. 1840. Über das silurische Schichtensystem in Esthland. St Petersburg, 210 pp.CrossRefGoogle Scholar
Embry, A. F. 1993. Transgressive–regressive (T–R) sequence analysis of the Jurassic succession of the Sverdrup Basin, Canadian Arctic Archipelago. Canadian Journal of Earth Science 30, 301–20.CrossRefGoogle Scholar
Embry, A. F. 2002. Transgressive–Regressive (T–R) Sequence Stratigraphy. 22nd Annual Gulf Coast Section SEPM Foundation Bob F. Perkins Conference, 2002, 151–72.Google Scholar
Felitsyn, S., Sturesson, U., Popov, L. & Holmer, L. 1998. Nd isotope composition and rare earth element distribution in early Paleozoic biogenic apatite from Baltoscandia: a signature of Iapetus ocean water. Geology 26, 1083–6.2.3.CO;2>CrossRefGoogle Scholar
Ghobadi Pour, M., Williams, M. & Popov, L. E. 2007. A new Middle Ordovician arthropod fauna (Trilobita, Ostracoda, Bradoriida) from the Lashkarak Formation, Eastern Alborz Mountains, northern Iran. GFF 129, 245–54.CrossRefGoogle Scholar
Hammer, Ø. 2003. Biodiversity curves for the Ordovician of Baltoscandia. Lethaia 36, 305–15.CrossRefGoogle Scholar
Hammer, Ø. & Harper, D. A. T. 2005. Palaeontological Data Analysis. Oxford: Blackwell Publishing, 351 pp.CrossRefGoogle Scholar
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4, 9 pp.Google Scholar
Hansen, J. & Harper, D. A. T. 2003. Brachiopod macrofaunal distribution through the upper Volkhov–lower Kunda (Lower Ordovician) rocks, Lynna River, St Petersburg region. Bulletin of the Geological Society of Denmark 50, 4555.CrossRefGoogle Scholar
Hessland, I. 1949. Investigations of the Lower Ordovician of the Siljan District, Sweden: Notes on the Swedish Ahtiella species. Bulletin of the Geological Society of the University of Uppsala 33, 511–27.Google Scholar
Hints, L. & Harper, D. A. T. 2003. Review of the Ordovician rhynchonelliformean Brachiopoda of the East Baltic: Their distribution and biofacies. Bulletin of the Geological Society of Denmark 50, 2945.CrossRefGoogle Scholar
Ivantsov, A. Y. 2003. Ordovician trilobites of the Subfamily Asaphinae of the Ladoga Glint. Palaeontological Journal 37, Supplement 3, 229337.Google Scholar
Jaanusson, V. 1973. Aspects of carbonate sedimentation in the Ordovician of Baltoscandia. Lethaia 6, 1134.CrossRefGoogle Scholar
Jaanusson, V. 1982. Introduction to the Ordovician of Sweden. In Field excursion guide, 1–9. IV International Symposium on the Ordovician System (eds Bruton, D. L. & Williams, S. H.), pp. 1–10. Palaeontological Contributions from the University of Oslo 279.Google Scholar
Jaanusson, V. 1984. What is so special about the Ordovician? In Aspects of the Ordovician System (ed. Bruton, D. L.), pp. 13. Oslo: Universitetsforlaget.Google Scholar
Jaanusson, V. 1995. Confacies differentiation and upper Middle Ordovician correlation in the Baltoscandian Basin. Proceedings of the Estonian Academy of Sciences, Geology 44 (2), 7386.CrossRefGoogle Scholar
Jaanusson, V. & Bassett, M. G. 1993. Orthambonites and related Ordovician brachiopod genera. Palaeontology 36 (1), 2163.Google Scholar
Lamansky, W. 1905. Die ältesten silurischen Schichten Russlands (Étage 8). Mémoires du Comité Géologique, Nouvelle Série, Livret 20, 1233.Google Scholar
Le Hérissé, A., Al-Ruwaili, M., Miller, M. & Vecoli, M. 2007. Environmental changes reflected by palynomorphs in the early Middle Ordovician Hanadir Member of the Qasim Formation, Saudi Arabia. Revue de micropaleontology 50, 316.CrossRefGoogle Scholar
Lindström, M. 1963. Sedimentary folds and the development of limestone in the early Ordovician sea. Sedimentology 2, 243–92.CrossRefGoogle Scholar
Lindström, M. 1971. Vom Anfang, Hochstand und Ende eines epikontinentalmeeres. Geologische Rundschau 60, 419–38.CrossRefGoogle Scholar
Mägi, S. 1990. Locality 4:2 Ontika Clint. In Field Meeting Estonia. An Excursion Guidebook, pp. 148–53. Tallinn: Institute of Geology.Google Scholar
Männil, R. 1966. Evolution of the Baltic Basin during the Ordovician. Tallinn: Valgus Publishers, 201 pp. (in Russian with English summary).Google Scholar
Meidla, T. & Ainsaar, L. 2004. On the Ordovician System of Estonia. In WOGOGOB-2004 Conference Materials (eds Hints, O. & Ainsaar, L.), pp. 107–11. Tartu: Tartu University Press.Google Scholar
Nielsen, A. T. 1995. Trilobite systematics, biostratigraphy and palaeoecology of the Lower Ordovician Komstad Limestone and Huk Formations, Southern Scandinavia. Fossils and Strata 38, 374 pp. Oslo.Google Scholar
Nielsen, A. T. 2004. Sea-level changes – a Baltoscandian perspective. In The Great Ordovician Biodiversification Event, Part II. Conspectus of the Ordovician world (eds Webby, B., Droser, M., Paris, F. & Percival, I.), pp. 8493. New York: Columbia University Press.CrossRefGoogle Scholar
Öpik, A. 1934. Über Klitamboniten. Acta et commentationes. Universitatis Tartuensis (Dorpatensis). Serie A mathematica, physica, medica XXVI (5). Tartu, 239 pp.Google Scholar
Pander, C. H. 1830. Beiträge zur geognosie des Russischen Reiches. St Petersburg, 130 pp.Google Scholar
Rasmussen, C. M. Ø., Hansen, J. & Harper, D. A. T. 2007. Baltica: a Mid Ordovician diversity hotspot. Historical Biology 19 (3), 255–61.CrossRefGoogle Scholar
Rasmussen, C. M. Ø. & Harper, D. A. T. 2008. Resolving early Mid Ordovician (Kundan) bioevents in the East Baltic based on brachiopods. GeoBios 41, 533–42.CrossRefGoogle Scholar
Raukas, A. & Teedumäe, A. 1997. Geology and Mineral Resources of Estonia. Tallinn: Estonian Academy Publishers, 436 pp.Google Scholar
Rõõmusoks, A. 1970. Stratigraphy in the Viruan Series (Middle Ordovician) in northern Estonia. Tallinn: Valgus, 346 pp.Google Scholar
Schmidt, F. 1858. Untersuchungen über die silurische Formationen von Estland, Nord-Livland und Oesel. Archiv für Naturkunde I, Serie II. Dorpat, 250 pp.Google Scholar
Schmidt, F. 1881. Revision der ostbaltischen silkurischen Trilobiten nebst geognosticher Übersicht des ostbaltischen Silurgebiets. Abtheilung I. Mémoires de l'Académie Impériale des Sciences de St-Pétersburg VII 30 (1). Tav. I-XVI. St-Pétersbourg, 237 pp.Google Scholar
Schmidt, F. 1894. Revision der Ostbaltischen Silurischen Trilobiten. Abtheilung IV. Mémoires de l'Académie Impériale des Sciences de St-Pétersburg VII 42 (5), 93 pp.Google Scholar
Schmidt, F. 1904. Revision der ostbaltischen Trilobiten. Abtheilung V: Asaphiden. Lief 3. Mémoires de l'Académie Impériale des Sciences de St-Pétersburg VIII 14 (10), 68 pp.Google Scholar
Schmidt, F. 1906. Revision der ostbaltischen Trilobiten. Abtheilung V: Asaphiden. Lief 4. Mémoires de l'Académie Impériale des Sciences de St-Pétersburg VIII 19 (10), 62 pp.Google Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7, 3653.CrossRefGoogle Scholar
Sturesson, U., Dronov, A. & Saadre, T. 1999. Lower Ordovician iron ooids and associated oolitic clays in Russia and Estonia: a clue to the origin of iron oolites? Sedimentary Geology 123, 6380.CrossRefGoogle Scholar
Sturesson, U., Heikoop, J. M. & Risk, M. J. 2000. Modern and Palaeozoic iron ooids – a similar volcanic origin. Sedimentary Geology 136, 137–46.CrossRefGoogle Scholar
Sturesson, U., Popov, L., Holmer, L. E., Bassett, M. G., Felitsyn, S. & Belyatsky, B. 2005. Neodymium isotopic composition of Cambrian–Ordovician biogenic apatite in the Baltoscandian Basin: implications for palaeogeographical evolution and patterns of diversity. Geological Magazine 142, 419–39.CrossRefGoogle Scholar
Tjernvik, T. E. 1956. On the early Ordovician of Sweden, Stratigraphy and fauna. Bulletin of the Geological institutions of the University of Uppsala New Series 8, 173204.Google Scholar
Torsvik, T. H. 1998. Palaeozoic palaeogeography: A North Atlantic viewpoint. GFF 120, 109–18.CrossRefGoogle Scholar
Trotter, J. A., Williams, I. S., Barnes, C. R., Lécuyer, C. & Nicoll, R. S. 2008. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science 321, 550–4.CrossRefGoogle ScholarPubMed
Waisfeld, B. G., Sánchez, T. M., Benedetto, J. L. & Carrera, M. G. 2003. Early Ordovician (Arenig) faunal assemblages from western Argentina: biodiversification trends in different geodynamic and palaeogeographic settings. Palaeogeography, Palaeoclimatology, Palaeoecology 196, 343–73.CrossRefGoogle Scholar
Supplementary material: File

Rasmussen supplementary material

Appendix 1.doc

Download Rasmussen supplementary material(File)
File 44 KB
Supplementary material: File

Rasmussen supplementary material

Appendix 2.doc

Download Rasmussen supplementary material(File)
File 49.2 KB
Supplementary material: PDF

Rasmussen supplementary material

Colour figures.pdf

Download Rasmussen supplementary material(PDF)
PDF 2.8 MB