Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T17:52:28.175Z Has data issue: false hasContentIssue false

Ecologic significance of post-Palaeozoic green calcareous algae

Published online by Cambridge University Press:  01 May 2009

Graham F. Elliott
Affiliation:
Dept of Palaeontology, British Museum (Natural History), Cromwell Road, London SW7 5BD

Summary

The palaeoecologic significance of post-Palaeozoic green calcareous algae is evaluated with what is known of the environments of comparable living algae. Here requirements and tolerances of temperature, bottomsediment, salinity and water-energy may be observed; depth is apparently significant only as it influences these. In the extinct algae, only a minority show clear taxonomic relationship to living algae, in palaeo-environmentsdeduced from independent evidence. Codiaceae and Dasycladales seem to have had environmental preferences like their living descendants, with preferredmicroenvironments in some genera.

Type
Articles
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakalova, D. & Khrischev, Kh. 1973. Facies affinity of green algae fromthe Stratesh Limestone Formation (Lovech Urgonian Group). Bull. geol. Inst. Bulgaria (ser. Strat.) 22, 119132.Google Scholar
Bodeur, Y. 1976. Le complexe récifale Jurassique supérieur ausud des Cevennes: architecture sédimentologique. C. r. hebd. Séanc. Acad. Sci., Paris, 282-D, 835–7.Google Scholar
Bosellini, A. & Ginsburg, R. N. 1971. Form and internal structure of Recent algal nodules (rhodolites) from Bermuda. J. Geol. 79, 669–82.Google Scholar
Chapman, V. J. 1961. The marine algae of Jamaica. 1. Myxophyceae and Chlorophyceae. Bull. Inst. Jamaica (Sci.) 12 (1).Google Scholar
Colinvaux, L. H. & Graham, E. A. 1964. A new species of Halimeda. Nova Hedwigia 7, 710.Google Scholar
Conover, J. T. 1964. The ecology, seasonal periodicity, and distribution ofbenthic plants in some Texas lagoons. Botanica mar. 7, 441.Google Scholar
Conrad, M. A. 1977. The Lower Cretaceous calcareous algae in the area surrounding Geneva (Switzerland): biostratigraphy and depositional environments. In Fossil Algae: Recent Results and Developments (ed. Flügel, E.), pp. 295300. Berlin, Heidelberg, New York: Springer-Verlag.CrossRefGoogle Scholar
Elliott, G. F. 1956. Further records of fossil calcareous algae from the Middle East. Micropaleontology 2, 327–34.Google Scholar
Elliott, G. F. 1958. Algal debris-facies in the Cretaceous of the Middle East. Palaeontology, 1, 254–9.Google Scholar
Elliott, G. F. 1965. The interrelationships of some Cretaceous Codiaceae (calcareous algae). Palaeontology 8, 199203.Google Scholar
Elliott, G. F. 1966. Algal nodules from the Lias of the Middle East. Geol. romana 5, 291302.Google Scholar
Elliott, G. F. 1968. Permian to Palaeocene calcareous algae (Dasycladaceae)of the Middle East. Bull. Br. Mus. nat. Hist. (Geol.), Suppl. 4.Google Scholar
Elliott, G. F. 1977. Inferred isocrymal distribution of Jurassic dasycladacean Algae in Europe, north Africa and southwestern Asia. J. geol. Soc. Lond. 133, 363–73.CrossRefGoogle Scholar
Ericson, D. B., Ewing, M. & Heezen, B. C. 1952. Turbidity currents and sediments in north Atlantic. Bull. Am. Ass. Petrol. Geol. 36, 489511.Google Scholar
Flügel, E. 1975. Kalkalgen aus Riffkomplexen der alpin-mediterranen Obertrias. Verh. geol. Bundesanst., Wien, 1974, pp. 297346.Google Scholar
Gebelein, C. B. 1969. Distribution, morphology, and accretion rate of recent subtidal algal stromatolites, Bermuda. J. sed. Petrol. 39, 4969.Google Scholar
Goreau, T. F. & Graham, E. A. 1967. A new species of Halimeda from Jamaica. Bull. mar. Sci. 17, 432–41.Google Scholar
Hillis, L. W. 1959. A revision of the genus Halimeda (order Siphonales). Inst. mar. Sci., Univ. Texas 6, 321403.Google Scholar
Johnson, J. H. & Konishi, K. 1960. An interesting late Cretaceous calcareous alga from Guatemala. J. Paleont. 34, 1099–105.Google Scholar
Lang, J. C. 1974. Biological zonation at the base of a reef. Am. Scient. 62, 272–81.Google Scholar
McMaster, R. L. & Conover, J. T. 1966. Recent algal stromatolites from the Canary Islands. J. Geol. 74, 647–52.CrossRefGoogle Scholar
Mathewson, J. E. & Sawin, R. S. 1976. Distribution and substrate of some brown algae at Puerto Penasco, Mexico. (Abstr.) J. Ariz. Acad. Sci. 11 (1976 Proc. Suppl.), 134.Google Scholar
Ott, E. 1966. Die gesteinsbildenden Kalkalgen im Schlauchkar (Karwendelgebirge). Jb. Ver. Schutze Alpenpfl. Tiere 31, 18.Google Scholar
Ott, E. 1967. Dasycladaceen (Kalkalgen) aus der nordalpinen Obertrias. Mitt. Bayer. Staatssamml. Paläont. hist. Geol. 7, 205–26.Google Scholar
Ott, E. 1972. Mitteltriadische Riffe der nördlichen Kalkalpen and altersgleiche Bildungen auf Karaburun und Chios (Ägäis). Mitt. Ges. Geol. Bergbaustud. 21, 251–76.Google Scholar
Radoic˘ic, R. 1959. Nekoliko problematic˘nih mikrofosila iz dinarske krede. Vesn. Zavod geol. geofiz. Istr., 17, 8792.Google Scholar
Sartoni, S. & Crescenti, U. 1960. La zona a Palaeodasycladus meditteraneus (Pia) nel Lias dell' Appennino meridionale. G. Geol. 27, 125.Google Scholar
Segonzac, G. & Marin, P. 1973. Lithocodium aggregatum Elliott etBacinella irregularis Radoic˘ic de l'Aptien de Teruel (Espagne): deux stades de croissance d'un seul et me˘me organisme incertae sedis. Bull. Soc. géol. Fr. (7), 14, 331–5.Google Scholar
Taylor, W. R. 1950. Plants of Bikini and Other Northern Marshall Islands. Ann Arbor and London (Univ. Michigan Stud., Sci. Ser., vol. 18).Google Scholar
Valet, G. 1969. Contribution à l'étude des Dasycladales.2: Cytologie et reproduction. 3: Révision systématique. Nova Hedwigia 17, 551644.Google Scholar
Woelkerling, W. J. 1976. South Florida benthic marine algae: keys and comments. Sedimenta 5.Google Scholar