Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T16:22:40.218Z Has data issue: false hasContentIssue false

Early Jurassic palaeopolar marine reptiles of Siberia

Published online by Cambridge University Press:  28 December 2020

Nikolay G. Zverkov*
Affiliation:
Borissiak Paleontological Institute of the Russian Academy of Sciences, Profsoyuznaya Street, 123, Moscow117997, Russia Geological Institute of the Russian Academy of Sciences, Pyzhevsky Lane 7, Moscow119017, Russia
Dmitry V. Grigoriev
Affiliation:
Faculty of Biology, St Petersburg State University, Universitetskaya Embankment 7/9, St Petersburg199034, Russia
Igor G. Danilov
Affiliation:
Zoological Institute of the Russian Academy of Sciences, Universitetskaya Embankment 1, St Petersburg199034, Russia
*
Author for correspondence: Nikolay G. Zverkov, Email: [email protected]

Abstract

Marine reptile occurrences are rare in the Lower Jurassic Series outside of Europe. Here we describe diverse marine reptile faunas from the Lower Jurassic Series (Pliensbachian and Toarcian stages, including the Toarcian–Aalenian boundary interval) of Eastern Siberia. The taxonomic composition of Toarcian marine reptile assemblages of Siberia highlight their cosmopolitan nature, with the presence of taxa previously known nearly exclusively from coeval strata of Europe, such as ichthyosaurians Temnodontosaurus and Stenopterygius, microcleidid plesiosaurians (including the genus Microcleidus), rhomaleosaurids and basal pliosaurids. The palaeogeographic reconstruction places these faunas to the palaeopolar region, north of the 80th northern parallel and up to the palaeo north pole (upper value within the 95% confidence interval for some of the localities). The materials include remains of both mature and juvenile (or even infant, judging by their very small size and poor ossification) animals, indicating a possibility that these polar seas may serve as a breeding area. The diversity and abundance of plesiosaurians and ichthyosaurians, along with a lack of thalattosuchian remains (considering their wide distribution elsewhere at low latitudes), is an additional argument that plesiosaurians and neoichthyosaurians were able to live and reproduce in a polar environment. There is no certainty whether these animals lived in polar seas permanently, or whether they were taking seasonal migrations. However, given the polar night conditions at high latitudes, the latter seems more plausible, and both these scenarios are further indirect evidence that these groups likely had a high metabolism.

Type
Original Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkhangelsky, MS and Sennikov, AG (2008) Subclass Synaptosauria. In Fossil Vertebrates of Russia and Neighbouring Countries. Fossil Reptiles and Birds. Part 1 (eds Ivakhnenko, MF and Kurochkin, EN), pp. 224–43. Moscow: GEOS [in Russian].Google Scholar
Bailey, H, Mate, BR, Palacios, DM, Irvine, L, Bograd, SJ and Costa, DP (2010) Behavioural estimation of blue whale movements in the Northeast Pacific from state-space model analysis of satellite tracks. Endangered Species Research 10, 93106.CrossRefGoogle Scholar
Bardet, N, Falconnet, J, Fischer, V, Houssaye, A, Jouve, S, Pereda Suberbiola, X, Pérez-Garcia, A, Rage, J-C and Vincent, P (2014) Mesozoic marine reptile palaeobiogeography in response to drifting plates. Gondwana Research 26, 869–87.CrossRefGoogle Scholar
Bardet, N, Pereda Suberbiola, X and Ruiz Omeñaca, JI (2008) Mesozoic marine reptiles from the Iberian Peninsula. Geo-Temas 10, 1245–48.Google Scholar
Bartholomai, A (1966) The discovery of plesiosaurian remains in freshwater sediments in Queensland. Australian Journal of Science 28, 437–38.Google Scholar
Benson, RBJ, Evans, M and Druckenmiller, PS (2012) High diversity, low disparity and small body size in plesiosaurs (Reptilia, Sauropterygia) from the Triassic–Jurassic boundary. PLoS ONE 7, e31838.CrossRefGoogle ScholarPubMed
Benson, RB, Ketchum, HF, Noé, LFand Gómez-Pérez, M (2011) New information on Hauffiosaurus (Reptilia, Plesiosauria) based on a new species from the Alum Shale Member (Lower Toarcian: Lower Jurassic) of Yorkshire, UK. Palaeontology 54, 547–71.CrossRefGoogle Scholar
Berge, J, Renaud, PE, Darnis, G, Cottier, F, Last, K, Gabrielsen, TM, Johnsen, G, Seuthe, L, Weslawski, JM, Leu, E, Moline, M, Nahrgang, J, Søreide, JE, Varpe, Ø, Lønne, OJ, Daase, M and Falk-Petersen, S (2015) In the dark: a review of ecosystem processes during the Arctic polar night. Progress in Oceanography 139, 258–71.CrossRefGoogle Scholar
Bernard, A, Lécuyer, C, Vincent, P, Amiot, R, Bardet, N, Buffetaut, E, Cuny, G, Fourel, F, Martineau, F, Mazin, JM and Prieur, A (2010) Regulation of body temperature by some Mesozoic marine reptiles. Science 328, 1379–82.CrossRefGoogle ScholarPubMed
Böttcher, R (1990) New information on the reproductive biology of Ichthyosaurs (Reptilia). Stuttgarter Beitraege zur Naturkunde Serie B (Geologie und Palaeontologie) 164, 151.Google Scholar
Boyd, IL (2004) Migration of marine mammals. In Biological Resources and Migration (ed. Werner, D), pp. 203–10. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Brinkman, DB and Tarduno, JA (2005) A Late Cretaceous (Turonian–Coniacian) high-latitude turtle assemblage from the Canadian Arctic. Canadian Journal of Earth Sciences 42, 2073–80.CrossRefGoogle Scholar
Broderick, AC, Coyne, MS, Fuller, WJ, Glen, F and Godley, BJ (2007) Fidelity and over-wintering of sea turtles. Proceedings of the Royal Society B 274, 1533–8.CrossRefGoogle ScholarPubMed
Bröker, KCA, Gailey, G, Tyurneva, OY, Yakovlev, YM, Sychenko, O, Dupont, JM, Vertyankin, VV, Shevtsov, E and Drozdov, KA (2020) Site-fidelity and spatial movements of western North Pacific gray whales on their summer range off Sakhalin, Russia. PLoS One 15, e0236649.CrossRefGoogle ScholarPubMed
Brown, DS (1981) The English Upper Jurassic Plesiosauroidea (Reptilia) and a review of the phylogeny and classification of the Plesiosauria. Bulletin of the British Museum (Natural History), Geology 35, 253347.Google Scholar
Buffetaut, E, Termier, G and Termier, H (1981) A teleosaurid (Crocodylia, Mesosuchia) from the Toarcian of Madagascar and its palaeobiogeographical significance. Paläontologigische Zeitschrift 55, 313–9.CrossRefGoogle Scholar
Buffrénil, Vde and Mazin, J-M (1990) Bone histology of the ichthyosaurs: comparative data and functional interpretation. Paleobiology 16, 435–47.CrossRefGoogle Scholar
Cadena, EA and Parham, JF (2015) Oldest known marine turtle? A new protostegid from the Lower Cretaceous of Colombia. PaleoBios 32, 142.CrossRefGoogle Scholar
Campbell, JA, Schröder-Adams, CJ, Haggart, JW, Druckenmiller, PS, Ryan, MJ and Zazula, GD (2013) First records of a plesiosaurian (reptilia: sauropterygia) and an ichthyosaur (reptilia: Ichthyosauria) from Yukon, Canada. The Canadian Field-Naturalist 127, 234–9.CrossRefGoogle Scholar
Chong Diaz, G (1977) Contribution to the knowledge of the Domeyko Range in the Andes of Northern Chile. Geologische Rundschau 66, 374404.Google Scholar
Chong Diaz, G and Gasparini, Z (1972) Presencia de crocodilian marino en el Jurassico de Chile. Revista de la Asociación Geológica Argentina 27, 406–9.Google Scholar
Chong Diaz, G and Gasparini, Z (1976) Los vertebrados mesozoicos de Chile y su aporte geopaleontologico. In Actas del Sexto Congreso Geológico Argentino. Bahia Blanca, 1975, pp. 4567. Buenos Aires: Asociación Geológica Argentina.Google Scholar
Dames, W (1895) Die Plesiosaurier der Süddeutschen Liasformation. Berlin: Abhandlungen der Königlich Preussischen Akademie der Wissenschaften, 81 p.CrossRefGoogle Scholar
Danilov, IG and Cherepanov, GO (2014) L.I. Khosatsky and his contribution to the development of the Leningrad school of vertebrate palaeontology. In Diversification and Stages of Evolution of the Organic World in the Light of the Fossil Record. Materials of LX session of the Paleontological Society at RAS (7-11 April 2014, Saint-Petersburg), pp. 155–57. Saint-Petersburg: VSEGEI.Google Scholar
Danilov, IG, Cherepanov, GO and Vitek, NS (2013) Chelonological studies of L.I. Khosatzky with his annotated bibliography on fossil turtles. Proceedings of the Zoological Institute of the Russian Academy of Sciences 317, 382425.Google Scholar
De la Beche, HT and Conybeare, WD (1821) Notice of the discovery of a new fossil animal, forming a link between the Ichthyosaurus and crocodile, together with general remarks on the osteology of the Ichthyosaurus . Transactions of the Geological Society of London 5, 559–94.CrossRefGoogle Scholar
Dennison, SS, Smith, PL and Tipper, HW (1990) An early Jurassic ichthyosaur from the Sandilands Formation, Queen Charlotte Islands, British Columbia. Journal of Paleontology 64, 850–3.CrossRefGoogle Scholar
Dera, G, Neige, P, Dommergues, J-L and Brayard, A (2011) Ammonite paleobiogeography during the Pliensbachian–Toarcian crisis (Early Jurassic) reflecting paleoclimate, eustasy, and extinctions. Global and Planetary Change 78, 92105.CrossRefGoogle Scholar
Devyatov, VP (1983) The sedimentation conditions in the Toarcian in the east of Siberian Platform. In Novye dannye po Stratigrafii i Paleogeografii Neftegazonosnykh Basseinov Sibiri [New Data on Stratigraphy and Paleogeography of Petroleum Basins of Siberia] (eds Bogatov, VI, Gol’bert, AE, Gurari, FG and Surkov, VS), pp. 3341. Novosibirsk: Sibirskyi Nauchno-Issledovatel’sky Institut Geologii Geophysiki i Mineral’nogo Syr’ya.Google Scholar
Devyatov, VP, Nikitenko, BL and Shurygin, BN (2011) Jurassic paleogeography of Siberia during major changeovers. Novosti Paleontologii i Stratigrafii 16–17, 87101 [in Russian].Google Scholar
Dong, Z (1980) A new plesiosauria from the Lias of Sichuan Basin. Vertebrata PalAsiatica 18, 191–7.Google Scholar
Doré, AG (1991) The structural foundation and evolution of Mesozoic seaways between Europe and the Arctic. Palaeogeography, Palaeoclimatology, Palaeoecology 87, 441–92.CrossRefGoogle Scholar
Durban, JW and Pitman, RL (2012) Antarctic killer whales make rapid, round-trip movements to subtropical waters: evidence for physiological maintenance migrations. Biology Letters 8, 274–7.CrossRefGoogle ScholarPubMed
Fernández, M and Lanes, S (1999) Presencia de ictiosaurios en el Sinemuriano del Rio Atuel, Cuenca Neuquina, Mendoza. Ameghiniana 36, 100.Google Scholar
Field, DJ, LeBlanc, A, Gau, A and Behlke, AD (2015) Pelagic neonatal fossils support viviparity and precocial life history of Cretaceous mosasaurs. Palaeontology 58, 401–7.CrossRefGoogle Scholar
Fischer, V, Bardet, N, Benson, RBJ, Arkhangelsky, MS and Friedman, M (2016) Extinction of fish-shaped marine reptiles associated with reduced evolutionary rates and global environmental volatility. Nature Communications 7, 111.CrossRefGoogle ScholarPubMed
Fischer, V, Guiomar, M and Godefroit, P (2011) New data on the palaeobiogeography of Early Jurassic marine reptiles: the Toarcian ichthyosaur fauna of the Vocontian Basin (SE France). Neues Jarhbuch für Geologie und Paläontologie 261, 111–27.CrossRefGoogle Scholar
Fleischle, CV, Wintrich, T and Sander, PM (2018) Quantitative histological models suggest endothermy in plesiosaurs. PeerJ 6, e4955.CrossRefGoogle ScholarPubMed
Gasparini, ZB (1979) Comentarios críticos sobre los vertebrados mesozoicos de Chile. In Actas II Congreso Geologico Chileno, Arica, 1979, pp. H15H32. Santiago: Instituo de Investigaciones Geologicas.Google Scholar
Gasparini, ZB (1985) Los reptiles marinos jurasicos de America del Sur. Ameghiniana 22, 2334.Google Scholar
Gasparini, ZB (1992) Marine reptiles from the circum-Pacific region. In The Jurassic of the Circum Pacific (ed. Westermann, GEG), pp. 361–64. Cambridge: Cambridge University Press.Google Scholar
Gasparini, Z, Vignaud, P and Chong, G (2000) The Jurassic Thalattosuchia (Crocodyliformes) of Chile; a paleobiogeographic approach. Bulletin de la Société Géologique de France 171, 657–64.CrossRefGoogle Scholar
Godefroit, P (1994) Les reptiles marins du Toarcien (Jurassique Inferieur) Belgo-Luxembourgeois. Memoirs pour servir à l’Explication des Cartes Geólogiques et Minières de la Belgique 29, 86.Google Scholar
Goryacheva, AA (2017) Lower Jurassic palynostratigraphy of Eastern Siberia. Stratigraphy and Geological Correlation 25, 265–95.CrossRefGoogle Scholar
Grigoriev, D and Grabovsky, A (2020) Arctic mosasaurs (Squamata, Mosasauridae) from the Upper Cretaceous of Russia. Cretaceous Research 114, 104499.CrossRefGoogle Scholar
Großmann, F (2007) The taxonomic and phylogenetic position of the Plesiosauroidea from the Lower Jurassic Posidonia Shale of south-west Germany. Palaeontology 50, 545–64.CrossRefGoogle Scholar
Harrell, TL, Perez-Huerta, A and Suarez, CA (2016) Endothermic mosasaurs? Possible thermoregulation of Late Cretaceous mosasaurs (Reptilia, Squamata) indicated by stable oxygen isotopes in fossil bioapatite in comparison with coeval marine fish and pelagic seabirds. Palaeontology 59, 351–63.CrossRefGoogle Scholar
Hoffet, J and Le Maitre, D (1939) Sur la stratigraphie et la paléontology du Lias des environs de Tchépone (Bas-Laos). Comptes Rendus hebdomadaires des séances de l’Académie des sciences (Paris) 209, 114–6.Google Scholar
Houssaye, A (2013) Bone histology of aquatic reptiles: what does it tell us about secondary adaptation to an aquatic life. Biological Journal of the Linnean Society 108, 321.CrossRefGoogle Scholar
Houssaye, A, Scheyer, TM, Kolb, C, Fischer, V and Sander, PM (2014) A new look at ichthyosaur long bone microanatomy and histology: implications for their adaptation to an aquatic life. PloS ONE 9, e95637, https://doi.org/10.1371/journal.pone.0095637.CrossRefGoogle Scholar
Ilyina, VI (1985) Palinologiya yury Sibiri [Palynology of Siberian Jurassic]. Nauka, Moscow [in Russian].Google Scholar
Johnson, R (1979) The osteology of the pectoral complex of Stenopterygius Jaekel (Reptilia: Ichthyosauria). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 159, 4186.Google Scholar
Kear, BP (2006a) Marine reptiles from the Lower Cretaceous of South Australia: elements of a high-latitude cold-water assemblage. Palaeontology 49, 837–56.CrossRefGoogle Scholar
Kear, BP (2006b) Plesiosaur remains from the Cretaceous high-latitude non-marine deposits in Southern Australia. Journal of Vertebrate Paleontology 26, 196–9.CrossRefGoogle Scholar
Kear, BP (2007) A juvenile pliosaurid plesiosaur (Reptilia: Sauropterygia) from the Lower Cretaceous of South Australia. Journal of Paleontology 81, 154–62.CrossRefGoogle Scholar
Kear, BP (2012) A revision of Australia’s Jurassic plesiosaurs. Palaeontology 55, 1125–38.CrossRefGoogle Scholar
Kirina, TI (1966) Stratigraphy of the Lower Jurassic deposits of the western part of the Vilyui Syneclise. Trudy VNIGRI 249, 1871.Google Scholar
Kirina, TI (1976) The Lower and Middle Jurassic boundary beds in the Vilyui Syneclise and the adjacent part of the Cis-Verkhoyansk trough. Trudy VNIGRI 388, 4271.Google Scholar
Knyazev, VG, Devyatov, VP, Kutygin, RV, Nikitenko, BL and Shurygin, BN (2003) The Toarcian Zonal Standard of Northeastern Asia. Yakutsk: Yakut Branch of SD RAS [in Russian].Google Scholar
Knyazev, VG, Devyatov, VP and Shurygin, BN (1991) Early Jurassic Stratigraphy and Paleogeography of the Eastern Siberian Platform. Yakutsk: Yakut Scientific Center SB AS USSR [in Russian].Google Scholar
Korte, C, Hesselbo, SP, Ullmann, CV, Dietl, G, Ruhl, M, Schweigert, G and Thibault, N (2015) Jurassic climate mode governed by ocean gateway. Nature Communications 6, https://doi.org/10.1038/ncomms10015.CrossRefGoogle ScholarPubMed
Krymholz, GYa and Tazikhin, NN (1957) New materials on stratigraphy of the Jurassic deposits of the Vilyui Syneclise. Proceedings of the USSR Academy of Sciences 116, 129–30 [in Russian].Google Scholar
Kutygin, RV and Knyazev, VG (2000) The Genus Dactylioceras (Ammonoidea) from Northeastern Russia. Paleontological Journal 34, 1422.Google Scholar
Li, J (1993) A new specimen of Peipehsuchus teleorhinus from Ziliujing formation of Daxian, Sichuan. Vertebrata PalAsiatica 31, 8594.Google Scholar
Lindgren, J, Sjövall, P, Thiel, V, Zheng, W, Ito, S, Wakamatsu, K, Hauff, R, Kear, BP, Engdahl, A, Alwmark, C, Eriksson, ME, Jarenmark, M, Sachs, S, Ahlberg, PE, Marone, F, Kuriyama, T, Gustafsson, O, Malmberg, P, Thomen, A, Rodríguez-Meizoso, I, Uvdal, P, Ojika, M and Schweitzer, MH (2018) Soft-tissue evidence for homeothermy and crypsis in a Jurassic ichthyosaur. Nature 564, 359–65.CrossRefGoogle Scholar
Luschi, P (2013) Long-distance animal migrations in the oceanic environment: orientation and navigation correlates. International Scholarly Research Notice 2013, 631839, doi: 10.1155/2013/631839 Google Scholar
Lydekker, R (1889) Palaeozoology: Vertebrata. In A Manual of Palaeontology for the Use of Students with a General Introduction on the Principles of Palaeontology (eds Nicholson, HA and Lydekker, R), pp. 8891474. Third Edition, Volume 2. Edinburgh: W. Blackwood.Google Scholar
Maisch, MW (2008) Revision der Gattung Stenopterygius Jaekel, 1904 emend. von Huene, 1922 (Reptilia: Ichthyosauria) aus dem unteren Jura Westeuropas. Palaeodiversity 1, 227–71.Google Scholar
Maisch, MW (2010) Phylogeny, systematics, and origin of the Ichthyosauria – the state of the art. Palaeodiversity 3, 151214.Google Scholar
Maisch, MW and Ansorge, J (2004) The Liassic ichthyosaur Stenopterygius cf. quadriscissus from the lower Toarcian of Dobbertin (northern Germany) and some considerations on lower Toarcian marine reptile paleobiogeography. Paläontologische Zeitschrift 78, 161–71.CrossRefGoogle Scholar
Maisch, MW and Matzke, AT (2000) The Ichthyosauria. Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) 298, 1159.Google Scholar
Mannion, PD, Benson, RBJ, Carrano, MT, Tennant, JP, Judd, J and Butler, RJ (2015) Climate constrains the evolutionary history and biodiversity of crocodylians. Nature Communications 6, 8438, doi: 10.1038/ncomms9438.CrossRefGoogle ScholarPubMed
Marek, RD, Moon, BC, Williams, M and Benton, MJ (2015) The skull and endocranium of a Lower Jurassic ichthyosaur based on digital reconstructions. Palaeontology 58, 723–42.CrossRefGoogle Scholar
Martin, JE (2002) Juvenile marine reptiles from the Late Cretaceous of the Antarctic peninsula, Belgium, and South Dakota. Proceedings of the South Dakota Academy of Science 81, 5357.Google Scholar
Martin, JE, Amiot, R, Lécuyer, C and Benton, MJ (2014) Sea surface temperature contributes to marine crocodylomorph evolution. Nature Communications 5, 4658.CrossRefGoogle ScholarPubMed
Martin, JE, Fischer, V, Vincent, P and Suan, G (2012) A longirostrine Temnodontosaurus (Ichthyosauria) with comments on Early Jurassic ichthyosaur niche partitioning and disparity. Palaeontology 55, 9951005.CrossRefGoogle Scholar
Martin, JE, Sawyer, JF, Reguero, M and Case, JA (2007) Occurrence of a young elasmosaurid plesiosaur skeleton from the Late Cretaceous (Maastrichtian) of Antarctica. In Antarctica: A Keystone in a Changing World. Online Proceedings of the 10th International Symposium of Antarctic Earth Sciences USGS Open-File Report 2007-1047, Short Research Paper 066, pp. 1e4.CrossRefGoogle Scholar
Martin, JE, Vincent, P, Tacail, T, Khaldoune, F, Jourani, E, Bardet, N and Balter, V (2017) Calcium isotopic evidence for vulnerable marine ecosystem structure prior to the K/Pg extinction. Current Biology 27, 1641–4.CrossRefGoogle ScholarPubMed
Martindale, RC, Them, TR, Gill, BC, Marroquín, SM and Knoll, AH (2017) A new Early Jurassic (ca. 183 Ma) fossil Lagerstätte from Ya Ha Tinda, Alberta, Canada. Geology 45, 255–8.CrossRefGoogle Scholar
Marzola, M, Mateus, O, Milàn, J and Clemmensen, LB (2018) A review of Palaeozoic and Mesozoic tetrapods from Greenland. Bulletin of the Geological Society of Denmark 66, 2146.CrossRefGoogle Scholar
Massare, J and Lomax, D (2019) Hindfins of Ichthyosaurus: effects of large sample size on ‘distinct’ morphological characters. Geological Magazine 156, 725–44.CrossRefGoogle Scholar
Maxwell, EE, Caldwell, MW and Lamoureux, DO (2012a) Tooth histology, attachment, and replacement in the Ichthyopterygia reviewed in an evolutionary context. Paläontologische Zeitschrift 86, 114.CrossRefGoogle Scholar
Maxwell, EE, Fernández, MS and Schoch, RR (2012b) First diagnostic marine reptile remains from the Aalenian (Middle Jurassic): a new ichthyosaur from Southwestern Germany. PLoS ONE 7, e41692, doi: 10.1371/journal.pone.0041692.CrossRefGoogle ScholarPubMed
Maxwell, EE, Zammit, M and Druckenmiller, PS (2012c) Morphology and orientation of the ichthyosaurian femur. Journal of Vertebrate Paleontology 32, 1207–11.CrossRefGoogle Scholar
McGowan, C (1974) A revision of the longipinnate ichthyosaurs of the Lower Jurassic of England, with description of the new species (Reptilia, Ichthyosauria). Life Science Contributions, Royal Ontario Museum 97, 137.Google Scholar
McGowan, C (1978) Further evidence for the wide geographical distribution of ichthyosaur taxa (Reptilia, Ichthyosauria). Journal of Paleontology 52, 1155–62.Google Scholar
McGowan, C (1996) Giant ichthyosaurs of the Early Jurassic. Canadian Journal of Earth Sciences 33, 1011–21.CrossRefGoogle Scholar
McGowan, C and Motani, R (2003) Handbook of Paleoherpetology, Ichthyopterygia. München: Verlag Dr. Friedrich Pfeil, 175 p.Google Scholar
Meledina, SV, Shurygin, BN and Dzyuba, OS (2005) Paleobiogeography and zonal stratigraphy of the Lower and Middle Jurassic of Siberia based on development stages of mollusks. Russian Geology and Geophysics 46, 239–55.Google Scholar
Menner, VV (1948) Remains of plesiosaurs from Middle Jurassic deposits of the Eastern Siberia. Trudy IGN AN SSSR Geological Series 98, 150 [in Russian].Google Scholar
Moon, BC (2019) A new phylogeny of ichthyosaurs (Reptilia: Diapsida). Journal of Systematic Palaeontology 17, 129–55.CrossRefGoogle Scholar
Motani, R (1991) A large ichthyosaur from the Middle Jurassic of Shizugawa, Miyagi. In Abstracts of the 40th Regional Meeting of the Palaeontological Society of Japan, p. 36. Chiba: Palaeontological Society of Japan.Google Scholar
Motani, R (2005) True skull roof configuration of Ichthyosaurus and Stenopterygius and its implications. Journal of Vertebrate Paleontology 35, 338–42.CrossRefGoogle Scholar
Newbrey, MG, Siversson, M, Cook, TD, Fotheringham, AM and Sanchez, RL (2013) Vertebral morphology, dentition, age, growth, and ecology of the large lamniform shark Cardabiodon ricki. Acta Palaeontologica Polonica 60, 877–97.Google Scholar
Nicholls, EL (1976) The oldest known North American occurrence of Plesiosauria (Reptilia: Sauropterygia) from the Liassic (Lower Jurassic) Fernie Group, Alberta, Canada. Canadian Journal of Earth Sciences 13, 185–8.CrossRefGoogle Scholar
Nicholson, DB, Holroyd, PA, Benson, RBJ and Barrett, PM (2015) Climate-mediated diversification of turtles in the Cretaceous. Nature Communications 6, 7848, https://doi.org/10.1038/ncomms8848.CrossRefGoogle ScholarPubMed
Nikitenko, BL and Mickey, MB (2004) Foraminifera and ostracodes across the Pliensbachian–Toarcian boundary in the Arctic Realm (stratigraphy, palaeobiogeography and biofacies). In The Palynology and Micropalaeontology of Boundaries (eds Beaudoin, AB and Head, MJ), pp. 137–74. Geological Society of London, Special Publication no. 230.Google Scholar
O’Keefe, FR (2001) A cladistic analysis and taxonomic revision of the Plesiosauria (Reptilia: Sauropterygia). Acta Zoologica Fennica 213, 163.Google Scholar
O’Keefe, FR (2004) Preliminary description and phylogenetic position of a new plesiosaur (Reptilia: Sauropterygia) from the Toarcian of Holzmaden, Germany. Journal of Paleontology 78, 973–88.2.0.CO;2>CrossRefGoogle Scholar
O’Keefe, FR and Chiappe, LM (2011) Viviparity and K-selected life history in a Mesozoic marine plesiosaur (Reptilia, Sauropterygia). Science 333, 870–3.CrossRefGoogle Scholar
O’Keefe, FR, Sander, PM, Wintrich, T and Werning, S (2019) Ontogeny of Polycotylid long bone microanatomy and histology. Integrative Organismal Biology 1, oby007.CrossRefGoogle ScholarPubMed
Otero, RA and Sepúlveda, P (2020) First temnodontosaurid (Ichthyosauria, Parvipelvia) from the Lower Jurassic of the Atacama Desert, northern Chile. Journal of South American Earth Sciences 98, 102459.CrossRefGoogle Scholar
Otero, RA, Soto-Acuña, S and Rubilar-Rogers, D (2015) El registro fósil de plesiosaurios (Sauropterygia) en Chile. In Vertebrados Fósiles de Chile (eds Rubilar-Rogers, D, Otero, R, Vargas, A and Sallaberry, M), pp. 151188. Chile: Publicación ocasional del Museo Nacional de Historia Natural, 63.Google Scholar
Owen, R (1838) A description of Viscount Cole’s specimen of Plesiosaurus macrocephalus (Conybeare). Proceedings of the Geological Society, London 2, 663–6.Google Scholar
Owen, R (1852) Note on the crocodilian remains accompanying Dr. T.L. Bell’s paper on Kotah. Quarterly Journal of the Geological Society of London 8, 233.Google Scholar
Pardo Pérez, J, Otero, RA and Suárez, MA (2015) Síntesis del registro fósil de ictiosaurios (Reptilia: Ichthyosauria) en Chile. In Vertebrados Fósiles de Chile (eds Rubilar-Rogers, D, Otero, R, Vargas, A and Sallaberry, M), pp. 113150. Chile: Publicación ocasional del Museo Nacional de Historia Natural, 63.Google Scholar
Poulton, TP, Detterman, RL, Hall, RL, Jones, DL, Peterson, JA, Smith, P, Taylor, DG, Tipper, HW and Westermann, GEG (1992) Western Canada and United States. In The Jurassic of the Circum Pacific (ed. Westermann, GEG), pp. 2992. Cambridge: Cambridge University Press.Google Scholar
Rasmussen, K, Palacios, DM, Calambokidis, J, Saborío, MT, Dalla, Rosa L, Secchi, ER, Steiger, GH, Allen, JM and Stone, GS (2007) Southern Hemisphere humpback whales wintering off Central America: insights from water temperature into the longest mammalian migration. Biology Letters 3(3), 3302–05, https://doi.org/10.1098/rsbl.2007.0067.CrossRefGoogle ScholarPubMed
Reisdorf, AG, Maisch, MW and Wetzel, A (2011) First record of the leptonectid ichthyosaur Eurhinosaurus longirostris from the Early Jurassic of Switzerland and its stratigraphic framework. Swiss Journal of Geosciences 104, 211–24.CrossRefGoogle Scholar
Rogov, MA, Zverkov, NG, Zakharov, VA and Arkhangelsky, MS (2019) Marine reptiles and climates of the Jurassic and Cretaceous of Siberia. Stratigraphy and Geological Correlation 27, 398423.CrossRefGoogle Scholar
Rząśnicki, AG (1918) On the distribution of the marine Dogger in Northern Siberia. Proceedings of the Mineralogical Society Series 2 61, 5766 [in Russian].Google Scholar
Sachs, S and Grant-Mackie, J (2003) An ichthyosaur fragment from the Cretaceous of Northland, New Zealand. Journal of the Royal Society of New Zealand 33, 307–14.CrossRefGoogle Scholar
Sachs, S, Hornung, JJ, Lierl, H-J and Kear, BP (2016) Plesiosaurian fossils from Baltic glacial erratics: evidence of Early Jurassic marine amniotes from the southwestern margin of Fennoscandia. In Mesozoic Biotas of Scandinavia and its Arctic Territories (eds Kear, BP, Lindgren, J, Hurum, JH, Milàn, J and Vaida, V), pp. 149–63. Geological Society of London, Special Publication no. 434.Google Scholar
Sachs, S and Kear, BP (2018) A rare new Pliensbachian plesiosaurian from the Amaltheenton Formation of Bielefeld in northwestern Germany. Alcheringa: An Australasian Journal of Palaeontology 42, 487500.CrossRefGoogle Scholar
Sato, T (1992) Southeast Asia and Japan. In The Jurassic of the Circum Pacific (ed. Westermann, GEG), pp. 194213. Cambridge: Cambridge University Press.Google Scholar
Sato, T, Li, C and Wu, X-C (2003) Restudy of Bishanpliosaurus youngi Dong 1980, a freshwater plesiosaurian from the Jurassic of Chongqing. Vertebrata PalAsiatica 41, 1733.Google Scholar
Seeley, HG (1874) Note on some of the generic modifications of the plesiosaurian pectoral arch. Quarterly Journal of the Geological Society of London 30, 436–49.CrossRefGoogle Scholar
Séon, N, Amiot, R, Martin, JE, Young, MT, Middleton, H, Fourel, F, Picot, L, Valentin, X and Lécuyer, C (2020) Thermophysiologies of Jurassic marine crocodylomorphs inferred from the oxygen isotope composition of their tooth apatite. Philosophical Transactions of the Royal Society B 375, 20190139.CrossRefGoogle ScholarPubMed
Shurygin, BN, Nikitenko, BL, Meledina, SV, Dzyuba, OS and Knyazev, VG (2011) Comprehensive zonal subdivisions of Siberian Jurassic and their significance for Circum-Arctic correlations. Russian Geology and Geophysics 52, 825–44.CrossRefGoogle Scholar
Skutschas, PP, Kolchanov, VV, Bulanov, VV, Sennikov, SG, Boitsova, EA, Golubev, VK and Syromyatnikova, EV (2020) Reconstruction of the life history traits in the giant salamander Aviturus exsecratus (Caudata, Cryptobranchidae) from the Paleocene of Mongolia using zygapophyseal skeletochronology. Historical Biology 32, 645–8.CrossRefGoogle Scholar
Smith, AS and Araujo, R (2017) Thaumatodracon wiedenrothi, a morphometrically and stratigraphically intermediate new rhomaleosaurid plesiosaurian from the Lower Jurassic (Sinemurian) of Lyme Regis. Palaeontographica Abteilung A 308, 89125.CrossRefGoogle Scholar
Smith, AS and Benson, R (2014) Osteology of Rhomaleosaurus thorntoni (Sauropterygia: Rhomaleosauridae) from the Lower Jurassic (Toarcian) of Northamptonshire, England. Monographs of the Palaeontographical Society 168, 140.CrossRefGoogle Scholar
Smith, AS and Vincent, P (2010) A new genus of pliosaur (Reptilia: Sauropterygia) from the Lower Jurassic of Holzmaden, Germany. Palaeontology 53, 1049–63.CrossRefGoogle Scholar
Southwood, A and Avens, L (2009) Physiological, behavioral, and ecological aspects of migration in reptiles. Journal of Comparative Physiology B 180, 123.CrossRefGoogle Scholar
Stevick, PT, Neves, MC, Johansen, F, Engel, MH, Allen, J, Marcondes, MCC and Carlson, C (2011) A quarter of a world away: female humpback whale moves 10,000 km between breeding areas. Biology Letters 7, 299302.CrossRefGoogle ScholarPubMed
Storrs, GW, Arkhangel’sky, MS and Efimov, VM (2000) Mesozoic marine reptiles of Russia and other former Soviet republics. In The Age of Dinosaurs in Russia and Mongolia (eds Benton, MJ, Shishkin, MA, Unwin, DM and Kurochkin, EN), pp. 187210. Cambridge: Cambridge University Press.Google Scholar
Suan, G, Nikitenko, BL, Rogov, MA, Baudin, F, Spangenberg, JE, Knyazev, VG, Glinskikh, LA, Goryacheva, AA, Adatte, T, Riding, JB, Föllmi, KB, Pittet, B, Mattioli, E and Lécuyer, C (2011) Polar record of Early Jurassic massive carbon injection. Earth and Planetary Science Letters 312, 102–13.CrossRefGoogle Scholar
Tanimoto, M and Okura, M (1989) Plesiosauroid teeth from Daira-gawa, the Kuruma Group (Lower Jurassic), Toyama Prefecture, Japan: a preliminary report. Bulletin of the Hobetsu Museum 5, 2732 [in Japanese].Google Scholar
Thulborn, RA and Warren, A (1980) Early Jurassic plesiosaurs from Australia. Nature 285, 224–25.CrossRefGoogle Scholar
Torsvik, TH, Van der Voo, R, Preeden, U, Mac Niocaill, C, Steinberger, B, Doubrovine, PV, van Hinsbergen, DJJ, Domeier, M, Gaina, C, Tohver, E, Meert, JG, McCausland, PJA and Cocks, LRM (2012) Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews 114, 325–68.CrossRefGoogle Scholar
Vakhrameev, VA (1987) Climates and the distribution of some gymnosperms in Asia during the Jurassic and Cretaceous. Review of Palaeobotany and Palynology 51, 205–12.CrossRefGoogle Scholar
van de Schootbrugge, B, Houben, AJP, Ercan, FEZ, Verreussel, R, Kerstholt, S, Janssen, NMM, Nikitenko, B and Suan, G (2020) Enhanced Arctic-Tethys connectivity ended the Toarcian Oceanic Anoxic Event in NW Europe. Geological Magazine 157, 1593–611.CrossRefGoogle Scholar
van Hinsbergen, DJJ, de Groot, LV, van Schaik, SJ, Spakman, W, Bijl, PK, Sluijs, A, Langereis, CG and Brinkhuis, H (2015) A paleolatitude calculator for paleoclimate studies (model version 2.1). PLOS ONE 10, e0126946, https://doi.org/10.1371/journal.pone.0126946.CrossRefGoogle Scholar
Vavrek, MJ, Wilhelm, BC, Maxwell, EE and Larsson, HCE (2014) Arctic plesiosaurians from the Lower Cretaceous of Melville Island, Nunavut, Canada. Cretaceous Research 50, 273–81.CrossRefGoogle Scholar
Vincent, P (2010) A juvenile plesiosaur specimen from the Lower Jurassic of Holzmaden, Germany. Palaeontographica A 291, 4561.CrossRefGoogle Scholar
Vincent, P (2011) A re-examination of Hauffiosaurus zanoni, a pliosauroid from the Toarcian (Early Jurassic) of Germany. Journal of Vertebrate Paleontology 31, 340–51.CrossRefGoogle Scholar
Vincent, P, Allemand, R, Taylor, PD, Suan, G and Maxwell, EE (2017) New insights on the systematics, palaeoecology and palaeobiology of a plesiosaurian with soft tissue preservation from the Toarcian of Holzmaden, Germany. The Science of Nature 104, 51, https://doi.org/10.1007/s00114-017-1472-6.CrossRefGoogle ScholarPubMed
Vincent, P, Bardet, N, Houssaye, A, Amaghzaz, M and Meslouh, S (2013a) New plesiosaur specimens from the Maastrichtian Phosphates of Morocco and their implications for the ecology of the latest Cretaceous marine apex predators. Gondwana Research 24(1), 796805.CrossRefGoogle Scholar
Vincent, P and Benson, RBJ (2012) Anningasaura, a basal plesiosaurian (Reptilia, Plesiosauria) from the Lower Jurassic of Lyme Regis, United Kingdom. Journal of Vertebrate Paleontology 32, 1049–63.CrossRefGoogle Scholar
Vincent, P, Martin, J, Fischer, V, Suan, G, Khalloufi, B, Suchéras-Marx, B, Lena, A, Janneau, K, Rousselle, B and Rulleau, L (2013b) Marine vertebrate remains from the Toarcian–Aalenian succession of southern Beaujolais, Rhône, France. Geological Magazine 150, 822–34.CrossRefGoogle Scholar
Vincent, P and Storrs, GW (2019) Lindwurmia, a new genus of Plesiosauria (Reptilia: Sauropterygia) from the earliest Jurassic of Halberstadt, northwest Germany. The Science of Nature 106, 5.CrossRefGoogle ScholarPubMed
Vincent, P, Weis, R, Kronz, G and Delsate, D (2019) Microcleidus melusinae, a new plesiosaurian (Reptilia, Plesiosauria) from the Toarcian of Luxembourg. Geological Magazine 156, 99116.CrossRefGoogle Scholar
Watson, DMS (1909) A preliminary note on two new genera of Upper Liassic plesiosaurs. Memoirs and Proceedings of the Manchester Literary and Philosophical Society 544, 129.Google Scholar
Wells, RS, Rhinehart, HL, Cunningham, P, Whaley, J, Baran, M, Koberna, C and Costa, DP (1999) Long distance offshore movements of bottlenose dolphins. Marine Mammal Science 15, 1098–114.CrossRefGoogle Scholar
White, TE (1940) The holotype of Plesiosaurus longirostris Blake and classification of the plesiosaurs. Journal of Paleontology 14, 451–67.Google Scholar
Wiffen, J, De Buffrénil, V, De Ricqlès, A and Mazin, J-M (1995) Ontogenetic evolution of bone structure in Late Cretaceous Plesiosauria from New Zealand. Geobios 28, 625–40.CrossRefGoogle Scholar
Wintrich, T, Hayashi, S, Houssaye, A, Nakajima, Y and Sander, PM (2017) A Triassic plesiosaurian skeleton and bone histology inform on evolution of a unique body plan. Science Advances 3, e1701144.CrossRefGoogle ScholarPubMed
Young, CC (1948) Fossil crocodiles in China, with notes on dinosaurian remains associated with the Kansu crocodiles. Vertebrata PalAsiatica 28, 255–88.Google Scholar
Zakharov, VA, Shurygin, BN, Il’ina, VI and Nikitenko, BL (2006) Pliensbachian–Toarcian biotic turnover in North Siberia and the Arctic Region. Stratigraphy and Geological Correlation 14, 399417.CrossRefGoogle Scholar
Zammit, M (2011) Australasia’s first Jurassic ichthyosaur fossil: an isolated vertebra from the Lower Jurassic Arataura Formation of North Island, New Zealand. Alcheringa: An Australasian Journal of Palaeontology 35, 341–3.CrossRefGoogle Scholar
Zbyszewski, G and Moitinho de Almeida, F (1952) Restes d’ ichthyosauriens dans de Lias de S. Pedro de Muel. Comunicações dos Serviços Geológicos de Portugal, Tomo XXXIII, Direcção-geral de Minas e Serviços Geológicos, Lisboa 33, 510.Google Scholar
Ziegler, PA (1988) Evolution of the Arctic–North Atlantic and the Western Tethys. AAPG Memoir 43, 1198.Google Scholar
Supplementary material: File

Zverkov et al. supplementary material

Zverkov et al. supplementary material 1

Download Zverkov et al. supplementary material(File)
File 20.8 KB
Supplementary material: PDF

Zverkov et al. supplementary material

Zverkov et al. supplementary material 2

Download Zverkov et al. supplementary material(PDF)
PDF 4.8 MB