Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T03:21:52.231Z Has data issue: false hasContentIssue false

Discussion of ‘Silicified serpentinite – a residuum of a Tertiary palaeo-weathering surface in the United Arab Emirates’

Published online by Cambridge University Press:  04 February 2014

C. R. M. Butt*
Affiliation:
CSIRO Earth Science and Resource Engineering, Box 1130, Bentley, Western Australia6102; E-mail: [email protected]

Extract

C. R. M. Butt comments: In their recent paper, Lacinska & Styles (2013) described in detail the geological setting, mineralogy and petrology of ‘silicified serpentinite’ in the Hajar Mountains, United Arab Emirates (UAE). They note that their ‘silicified serpentinite’ is essentially the same unit as ‘birbirite’ and other informally named quartz-rich outcrops that overlie ultramafic rocks in this and other regions. Some authors have suggested such silicification to be hydrothermal in origin, but it is now generally accepted to be due to weathering. Lacinska & Styles (2013) concluded that ‘silicified serpentinite’ is a silcrete; this is correct, but it is a purely descriptive term and, without qualification, has no specific genetic implications other than being silica-cemented regolith (Butt & Zeegers, 1992; Eggleton, 2001). The materials illustrated are more correctly termed a silicified saprolite as they preserve the fabric of the protolith.

Type
Discussion
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alsharan, A. S. & Nasir, S. J. Y. 1996. Sedimentological and geochemical interpretation of a transgressive sequence: the Late Cretaceous Qahlah Formation in the western Oman Mountains, United Arab Emirates. Sedimentary Geology 101, 227–42.Google Scholar
Beauvais, A., Ruffet, G., Hénocque, O. & Colin, F. 2008. Chemical and physical erosion rhythms of the West African Cenozoic morphogenesis: the 39Ar-40Ar dating of supergene K-Mn oxides. Journal of Geophysical Research 113, F04007. doi:10.1029/2008JF000996.CrossRefGoogle Scholar
Brand, N. W. & Butt, C. R. M. 2001. Weathering, element distribution and geochemical dispersion at Mt. Keith, Western Australia: implication for nickel sulphide exploration. Geochemistry: Exploration, Environment, Analysis 1, 391407.Google Scholar
Brown, G. F., Schmidt, D. L., & Huffman, A. C. 1989. Geology of the Arabian Peninsula; Shield Area of Western Saudi Arabia. U. S. Geological Survey Professional Paper 560-A. Reston, Virginia: US Geological Survey.Google Scholar
Butt, C. R. M. & Nickel, E. H. 1981. Mineralogy and geochemistry of the weathering of the disseminated nickel sulfide deposit at Mt. Keith, Western Australia. Economic Geology 76, 1736–51.CrossRefGoogle Scholar
Butt, C. R. M. & Zeegers, H. (eds) 1992. Regolith Exploration Geochemistry in Tropical and Subtropical Terrains. Handbook of Exploration Geochemistry 4. Amsterdam: Elsevier, 607 pp.Google Scholar
Eggleton, R. A. (eds) 2001. The Regolith Glossary. Surficial Geology, Soils and Landscapes. CRC LEME, Perth, 144 p. See also http://www.crcleme.org.au/Pubs/monographs.html#books (date last accessed August 2013).Google Scholar
Eggleton, R. A., Fitz Gerald, J. & Foster, L. 2011. Chrysoprase from Gumigil, Queensland. Australian Journal of Earth Sciences 58, 767–76.Google Scholar
Freyssinet, P., Butt, C. R. M., Morris, R. C. & Piantone, P. 2005. Ore-forming processes related to lateritic weathering. In Economic Geology 100th Anniversary Volume (eds Hedenquist, J. W., Thomson, J. F. H., Goldfarb, R. J. & Richards, J. P.), pp. 681722. New Haven, Connecticut: Economic Geology Publishing Company.Google Scholar
Golightly, J. P. 2010. Progress in understanding the evolution of nickel laterites. In The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries. Volume II: Zinc-Lead, Nickel-Copper-PGE, and Uranium (eds Goldfarb, R. J., Marsh, E. E. & Monecke, T.), pp. 451–75. Society of Economic Geologists, Special Publication no. 15.Google Scholar
Gregory, G. P. & Janse, A. J. A. 1992. Diamond exploration in tropical terrains. In Regolith Exploration Geochemistry in Tropical and Subtropical Terrains (eds Butt, C. R. M. & Zeegers, H.), pp. 419–37. Handbook of Exploration Geochemistry 4. Amsterdam: Elsevier.CrossRefGoogle Scholar
Lacinska, A. M. & Styles, M. T. 2013. Silicified serpentinite – a residuum of a Tertiary palaeo-weathering surface in the United Arab Emirates. Geological Magazine 150, 385–95.CrossRefGoogle Scholar
Nolan, S. C., Skelton, P. W., Clissold, B. P. & Smewing, J. D. 1990. Maastrichtian to early Tertiary stratigraphy and palaeogeography of the central and northern Oman Mountains. In The Geology and Tectonics of the Oman Region (eds. Robertson, A. H. F., Searle, M. P. & Ries, A. C.), pp. 495519. Geological Society of London, Special Publication no.49.Google Scholar
Thorne, R., Herrington, R. & Roberts, S. 2009. Composition and origin of the Çaldağ oxide nickel laterite, W. Turkey. Mineralium Deposita 44, 581–95.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate, 65Ma to present. Science 292, 686–93.CrossRefGoogle Scholar