Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T10:49:40.176Z Has data issue: false hasContentIssue false

Depositional origin of tuffaceous units in the Pliocene Upper Siwalik Subgroup, Jammu (India), NW Himalaya

Published online by Cambridge University Press:  25 January 2008

G. M. BHAT*
Affiliation:
Postgraduate Department of Geology, University of Jammu, Jammu – 180 006, India
S. N. KUNDAL
Affiliation:
Postgraduate Department of Geology, University of Jammu, Jammu – 180 006, India
S. K. PANDITA
Affiliation:
Postgraduate Department of Geology, University of Jammu, Jammu – 180 006, India
G. V. R. PRASAD
Affiliation:
Postgraduate Department of Geology, University of Jammu, Jammu – 180 006, India
*
*Author for correspondence: [email protected]

Abstract

During late Pliocene times, extrabasinally derived acidic volcanic ashes were deposited as distal pyroclastic fallout in upland interfluvial–lacustrine settings in the northwestern part of the Siwalik basin. These ash beds occur as a bentonitized tuff band and tuffaceous mudstones in the Jammu region of India. We located and described 12 outcrops of this conspicuous, geographically widespread bentonitized tuff band and tuffaceous mudstone association at the same stratigraphic level, coincident with the Gauss–Matuyama boundary at 2.48 Ma. This bentonitized tuff band and tuffaceous mudstone association represents a stratigraphic marker horizon in the diachronous and sporadic vertebrate fauna-yielding Siwalik strata. The claystone, siltstone, and sandstone units and embedded bentonitized tuff band and tuffaceous mudstone beds represent a coarsening-upward sequence reflecting deposition in lacustrine proximal and distal bottomsets, pro-delta foresets, and mouth-bar facies capped by fluvial topsets. This study reports a chain of four contemporaneous, palaeo-lake basins at this stratigraphic level, which ranged in length from 2 to 7 km.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, R. P., Nanda, A. C., Prasad, D. N. & Dey, D. K. 1993. Geology and biostratigraphy of the Upper Siwalik of Samba area, Jammu foothills. Journal Himalayan Geology 4, 227–36.Google Scholar
Allen, J. R. L. 1982. Sedimentary Structures: Their Character and Physical Basis. Developments in Sedimentology. Amsterdam, New York, Oxford: Elsevier Science Publishing Company, 663 pp.Google Scholar
Anderson, R. Y., Nuhfer, E. B. & Dean, W. E. 1985. Sedimentation in a blastzone lake at Mount St. Helens, Washington – Implications for varve formation. Geology 13, 348–52.2.0.CO;2>CrossRefGoogle Scholar
Ashley, G. M. 1975. Rhythmic sedimentation in glacial Lake Hitchcock, Massachusetts–Connecticut. In Glaciofluvial and Glaciolacustrine sedimentation (eds Jopling, A. V. & MacDonald, B. C.), pp. 304–20. Society of Economic Palaeontologists and Mineralogists, Special Publication no. 23.CrossRefGoogle Scholar
Azzaroli, A. & Napoleone, G. 1982. Magnetostratigraphic investigations of the Upper Siwalik near Pinjor, India. Revista Italiana Palaeontologia 87, 739–62.Google Scholar
Bates, C. C. 1953. Rational theory of delta formation. American Association of Petroleum Geologists Bulletin 37, 2119–62.Google Scholar
Bhat, G. M. & Pandita, S. K. 1998. Sedimentology, mineralogy and geochemistry of fallout tephra deposits in Upper Siwalik Subgroup, Jammu, India. 13th Himalaya–Karakoram–Tibet International Workshop. Special Issue, Geological Bulletin, University of Peshawar 31, 34–6.Google Scholar
Bhat, G. M., Pandita, S. K., Singh, R., Malik, M. A. & Sarkar, S. 1999. Northwest Himalayan Successions along Jammu–Srinagar Transect (Field Guide). Indian Association of Sedimentologists, Aligarh, India, 141 pp.Google Scholar
Bhatia, S. B., Bhat, G. M. & Pandita, S. K. 2001. Microfossils from the Nagrota Formation, Upper Siwalik Subgroup, Jammu Hills. Journal Geological Society of India 58, 509–18.Google Scholar
Bhatia, S. B., Soulie-Marsche, I. & Gemayel, P. 1998. Late Pliocene and early Pleistocene charophyte flora of the Hirpur Formation, Karewa Group, Kashmir, India. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 210, 185209.Google Scholar
Burbank, D. W. & Tahirkheli, R. A. K. 1985. The magnetostratigraphy, fission track dating, and stratigraphic evolution of the Peshawar intermontane basin, northern Pakistan. Geological Society of America Bulletin 96, 539–52.2.0.CO;2>CrossRefGoogle Scholar
Farrell, K. M. 1987. Sedimentology and facies architecture of overbank deposits of the Mississippi River, False River region, Louisiana. In Recent Development in Fluvial Sedimentology (eds Ethridge, F. G., Flores, R. M. & Harvey, M. D.), pp. 111–20. Society of Economic Palaeontologists and Mineralogists, Special Publication no. 39.CrossRefGoogle Scholar
Fisher, R. V. & Schmincke, H. U. 1984. Pyroclastic Rocks. Heidelberg, New York: Springer-Verlag, 472 pp.CrossRefGoogle Scholar
Gupta, S. S. & Verma, B. C. 1988. Stratigraphy and vertebrate fauna of the Siwalik Group, Mansar–Uttarbani section, Jammu district, J & K. Journal of the Palaeontological Society of India 33, 117–24.Google Scholar
Jezek, P. A. & Noble, D. C. 1978. Natural hydration and ion exchange of obsidian: an electron microprobe study. American Mineralogist 63, 266–73.Google Scholar
Johnson, G. D., Zeitler, P., Naeser, C. W., Johnson, N. M., Summers, D. M. & Frost, C. D. 1982. The occurrence and fission track ages of late Neogene and Quaternary volcanic sediments, Siwalik Group Northern Pakistan. Palaegeography, Palaeoclimatology, Palaeoecology 37, 6393.Google Scholar
Kumar, S., Parkash, B., Manchanda, M. L., Singvi, A. K. & Srivastava, P. 1996. Holocene landform and soil evolution of the western Gangetic Plains: Implications of neotectonics and climate. Zeitschrift für Geomorphology, special edition, 103, 283312.Google Scholar
Nelson, C. H., Meyer, A. W., Thor, D. & Larson, M. 1986. Crater Lake, Oregon: a restricted basin with base-of-slope aprons of non-channellized turbidites. Geology 14, 238–41.2.0.CO;2>CrossRefGoogle Scholar
Prothero, D. R. & Schwab, F. 1996. Sedimentary Geology: An Introduction to Sedimentary Rocks. Freeman, 575 pp.Google Scholar
Ranga Rao, A., Agarwal, R. P., Sharma, U. N., Bhalla, M. S. & Nanda, A. C. 1988. Magnetic polarity stratigraphy and vertebrate palaeontology of the Upper Siwalik Subgroup of Jammu hills, India. Journal of the Geological Society of India 31, 361–5.Google Scholar
Ray, P. 1976. Structure and sedimentological history of the overbank deposits of a Mississippi River point bar. Journal of Sedimentary Petrology 46, 788801.Google Scholar
Reading, H. G. 1996. Sedimentary Environments: Processes, Facies and Stratigraphy. London: Blackwell Science, 688 pp.Google Scholar
Reineck, H. E. 1974. Schichtgefüge der Ablagerungen im tieferen Seebecken des Bodensees. Senckenbergiana Maritima 6, 4763.Google Scholar
Schäfer, A. & Stapf, K. R. G. 1978. Permian Saar-Nahe Basin and Recent Lake Constance (Germany): two environments of lacustrine algal carbonates. In Modern and Ancient Lake Sediments (eds Matter, A. & Tucker, M. E.), pp. 83107. International Association of Sedimentologists, Special Publication no. 2.CrossRefGoogle Scholar
Self, S. 1976. The recent volcanology of Terceira, Azores. Journal of the Geological Society, London 132, 645–66.Google Scholar
Shanmugam, G. 2002. Ten turbidite myths. Earth-Science Reviews 58, 311–41.Google Scholar
Shanmugam, G. 2003. Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons. Marine and Petroleum Geology 20, 471–91.Google Scholar
Shanmugam, G., Hermance, W. E., Olaifa, J. O. & Odior, E. G. 1995. Slump dominated upper slope reservoir facies, Intra Qua Iboe (Pliocene), Edop Field, offshore Nigeria. American Association of Petroleum Geologists Annual Convention Official Program, 88A, abstract.CrossRefGoogle Scholar
Shanmugam, G. & Moiola, R. J. 1995. Reinterpretation of depositional processes in a clastic flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma. American Association of Petroleum Geologists Bulletin 79, 672–95.Google Scholar
Sharma, S., Sharma, M. & Singh, I. B. 2001. Facies characteristics and cyclicity of Lower Siwalik sediments, Jammu area: a new perspective. Geological Magazine 138, 455–70.CrossRefGoogle Scholar
Singh, I. B. 1972. On the bedding in the natural levee and the point bar deposits of the Gomti River, Uttar Pardesh, India. Sedimentary Geology 7, 309–17.Google Scholar
Singh, I. B., Srivastava, P., Sharma, S., Sharma, M., Singh, D. S. & Rajagopalan, G. 1999. Upland interfluve (Doab) deposition: alternative model to muddy overbank deposits. Facies 40, 197210.CrossRefGoogle Scholar
Smith, N. D. & Perez-Arlucea, M. 1994. Fine-grained splay deposition in the avulsion belt of the Lower Saskatchewan River, Canada. Journal of Sedimentary Research 64, 159–68.Google Scholar
Sorby, H. C. 1908. On the application of quantitative methods to the study of the structure and history of rocks. Quaternary Journal of the Geological Society of London 64, 171267.CrossRefGoogle Scholar
Srivastava, P., Parkash, B., Sehgal, J. L. & Kumar, S. 1994. Role of neotectonics and climate in development of the Holocene geomorphology and soils of the Gangetic Plains between the Ramganga and Rapti rivers. Sedimentary Geology 94, 129–51.CrossRefGoogle Scholar
Sturm, M. & Matter, A. 1978. Turbidites and Varves in Lake Brienz (Switzerland): deposition of clastic detritus by density currents. In Modern and Ancient Lake Sediments (eds Matter, A. & Tucker, M. E.), pp. 147–68. International Association of Sedimentologists, Special Publication no. 2.CrossRefGoogle Scholar
Tandon, S. K. & Kumar, R. 1984. Discovery of tuffaceous mudstones in the Pinjor Formation of Panjab Sub-Himalaya, India. Current Science 53 (18), 982–4.Google Scholar
Tiercelin, J. J., Soreghan, M., Cohen, A. S., Lezzar, K. E. & Bouroullec, J. L. 1992. Sedimentation in large rift lakes: example from the Middle Pleistocene–Modern deposits of the Tanganyika trough, East African rift system. Bulletin Centre de Recherches Exploration Production Elf-Aquitaine 16, 83111.Google Scholar
Tye, R. S. & Coleman, J. M. 1989 a. Depositional processes and stratigraphy of fluvially dominated lacustrine deltas: Mississippi Delta Plain. Journal of Sedimentary Petrology 59, 973–6.Google Scholar
Tye, R. S. & Coleman, J. M. 1989 b. Evolution of Atchafalaya lacustrine deltas, South-Central Louisiana. Sedimentary Geology 65, 95112.CrossRefGoogle Scholar
Visser, C. F. & Johnson, G. D. 1978. Tectonic control of late Pliocence molasses sedimentation in a portion of the Jhelum re-entrant Pakistan. Sonderdruck aus der Geologischen Rundschau 67, 1537.CrossRefGoogle Scholar
Weirich, F. H. 1986. A study of the nature and incidence of density currents in a shallow glacial lake. Annals of the Association of American Geographers 76, 396413.Google Scholar