Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T16:37:21.690Z Has data issue: false hasContentIssue false

Crystallization of solid solutions from aqueous solutions in a porous medium: zoning in (Ba, Sr)SO4

Published online by Cambridge University Press:  01 May 2009

Manuel Prieto
Affiliation:
Departamento de Geologia, Universidad de Oviedo, 3300 Oviedo, Spain
Andrew Putnis
Affiliation:
Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, U.K.
Lurdes Fernandez-Diaz
Affiliation:
Departamento de Cristalografia y Mineralogia, Universidad Complutense de Madrid, 2804 Madrid, Spain

Abstract

Barite-celestite solid solutions have been synthesized under controlled conditions by the counter-diffusion of Ba2+, Sr2+ and SO42–ions through a porous transport medium (silica gel), to investigate the factors which control compositionalzoning. The equilibrium compositions of solid solution and aqueous solutionhave been determined from the relative solubilities of barite and celestite, predicting that virtually pure barite should precipitate from Sr-rich solutions. However, nucleation and growth in a porous medium, where mass transport is by diffusion, takes place at very high supersaturations. The threshold supersaturation for nucleation is inversely related to the solubility and is therefore much higher for barite than celestite. The balance between the thermodynamics and kinetics of nucleation and growth at high supersaturations leads to zoning patterns the reverse of those predicted at equilibrium. At high supersaturations the zoning is periodic and sector-controlled with many of the general features observed in natural minerals. Oscillatory zoning with compositional gaps can take place without the need to invoke miscibility gaps or periodic variations in externally controlled intensive parameters.

Type
Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allègre, C. J., Provost, A. & Jaupart, C. 1981. Oscillatory zoning: a pathological case of crystal growth. Nature 294, 223–8.CrossRefGoogle Scholar
Boistelle, R. 1982. Mineral crystallization from solutio. In Crystal growth in sedimentary environments. (eds Sunagawa, I. & Rodriguez, R.), pp. 135–53. Estudios Geologicos, vol. 38.Google Scholar
Brower, E. & Renault, J. 1971. Solubility and enthalpy of the barium-strontium sulfate solid solution series. New Mexico State Bureau of Mines and Mineral Resources, Socorro, N. M. Circular No 116, 21 pp.CrossRefGoogle Scholar
Chernov, A. A. 1984. Modern Crystallography III: Crystal Growth. Springer Verlag.CrossRefGoogle Scholar
Dickson, J. A. D. 1991. Disequilibrium carbon and oxygen isotope variationsin natural calcite. Nature 353, 842–4.CrossRefGoogle Scholar
Doerner, H. A. & Hoskins, W. M. 1925. Coprecipitation of radium and barium sulfates. Journal of the American Chemical Society 47, 662–75.CrossRefGoogle Scholar
Farmer, C. B., Searl, A. & Halls, C. 1991. Cathodoluminescence and growth of cassiterite in the composite lodes at South Crofty Mine, Cornwall, England. Mineraological Magazine 380, 447–58.CrossRefGoogle Scholar
Glynn, P. D., Reardon, E. J., Plummer, L. N. & Busenberg, E. 1990. Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems. Geochimica et Cosmochimica Acta 54, 267–82.CrossRefGoogle Scholar
Hanor, J. S. 1968. Frequency distribution of compositions in the barite-celestite series. American Mineralogist 53, 1215–22.Google Scholar
Hollister, L. S. & Gancarz, A. J. 1971. Compositional sector zoning in clinopyroxene from the Narce Area, Italy. American Mineralogist 56, 959–79.Google Scholar
Jamtveit, B. 1991. Oscillatory zonation patterns in hydrothermal grossular-andradite garnet: non-linear dynamics in regions of immiscibility. American Mineralogist 76, 1319–27.Google Scholar
Lippmann, F. 1982. Stable and metastable solubility diagrams for the systemCaCO3-MgC03 H2O at ordinary temperature. Bulletin de Mineralogie 105, 273–9.CrossRefGoogle Scholar
Lloyd, G. E. 1987. Atomic number and crystallographic contrast images with the SEM: a review of back-scattered electron techniques. Mineralogical Magazine 51, 319.CrossRefGoogle Scholar
Malinin, S. D. & Urusov, V. S. 1983. The experimental and theoretical data on isomorphism in the (Ba, Sr)SO4 system in relation to barite formation. Geokhimiya 9, 1324–34.Google Scholar
Nielsen, A. E. & Sohnel, O. 1971. Interfacial tensions electrolyte crystal-aqueous solution from nucleation data. Journal of Crystal Growth 11, 233–42.CrossRefGoogle Scholar
Ortoleva, P., Merino, E., Moore, C. & Chadam, J. 1987. Geochemical self-organisation I: reaction-transport feedbacks and modeling approach. American Journal of Science 287, 9791007.CrossRefGoogle Scholar
Plummer, L. N. & Busenberg, E. 1987. Thermodynamics of aragonite-strontianite solid solutions: Results from stoichiometric solubility at 25 and 76°C Geochimica et Cosmochimica Acta 51, 1393–411.CrossRefGoogle Scholar
Prieto, M., Putnis, A. & Fernandez-Diaz, L. 1990. Factors controlling the kinetics of crystallization: supersaturation evolution in a porous medium. Application to barite crystallization. Geological Magazine 127, 485–95.CrossRefGoogle Scholar
Prieto, M., Fernandez-Diaz, L. & Lopez Andres, S. 1991. Spatial and evolutionary aspect of nucleation in diffusing-reacting systems. Journal ofCrystal Growth 108, 770–8.CrossRefGoogle Scholar
Raith, M. 1976. The Al-Fe(III) epidote miscibility gap in a metamorphic profile through the penninic series of the Tauern window, Austria. Contributions to Mineralogy and Petrology 57, 99117.CrossRefGoogle Scholar
Reeder, R. J. & Prosky, J. L. 1986. Compositional sector zoning in dolomite. Journal of Sedimentary Petrology 56, 237–47.Google Scholar
Reeder, R. J., Fagioli, R. O. & Meyers, W. J. 1990. Oscillatory zoning of Mn in solution-grown calcite crystals. Earth-Science Reviews 29, 3946.CrossRefGoogle Scholar
Searl, A. 1990. Complex sector zonation in ankerite: geochemical controls on crystal morphology and intersector element partitioning. MineralogicalMagazine 54, 501–7.Google Scholar
Smith, J. V. & Brown, W. L. 1988. Feldspar Minerals 1. 2nd Ed. Springer Verlag.CrossRefGoogle Scholar
Sohnel, O. 1982. Electrolyte crystal-aqueous solution interfacial tensions from crystallization data. Journal of Crystal Growth 57, 101–8.CrossRefGoogle Scholar
Walton, A. G. 1969. Nucleation in liquids and solutions. In Nucleation (ed. Zettlemoyer, A. C.), pp. 225307. New York: Marcel Dekker Inc.Google Scholar
Yardley, B. W. D., Rochelle, C. A., Barnicoat, A. C. & Lloyd, G. E. 1991. Oscillatory zoning in metamorphic minerals: an indicator of infiltrationmetasomatism. Mineralogical Magazine 380, 357–66.CrossRefGoogle Scholar