Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T14:21:58.396Z Has data issue: false hasContentIssue false

Cr-spinel compositions in serpentinites and their implications for the petrotectonic history of the Zagros Suture Zone, Kurdistan Region, Iraq

Published online by Cambridge University Press:  11 July 2011

KHALID J. A. ASWAD
Affiliation:
Department of Geology, College of Science, Mosul University, Iraq
NABAZ R. H. AZIZ
Affiliation:
Department of Geology, College of Science, Sulaimani University, Kurdistan Region, Iraq
HEMIN A. KOYI*
Affiliation:
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
*
Author for correspondence: [email protected]

Abstract

Accessory chrome spinels are scattered throughout the serpentinite masses in two allochthonous thrust sheets belonging to the Penjween–Walash sub-zone of the northwestern Zagros Suture Zone in Kurdistan. Based on field evidence, the serpentinites are divided into two groups: (1) highly sheared serpentinites (110–80 Ma), which occupy the lower contact of the ophiolitic massifs of the Upper Allochthonous sheet (Albian–Cenomanian age), and (2) ophiolitic mélange serpentinites of mixed ages (150 and 200 Ma) occurring along thrust faults on the base of the volcano-sedimentary segment (42–32 Ma) of the Lower Allochthonous sheet. The Cr-spinels of both groups show a wide range of YCr (Cr/(Cr + Al) atomic ratio) from 0.37 to 1.0, while the XMg (Mg/(Mg + Fe2+) atomic ratio) ranges from 0.0 to 0.75. Based on the Cr-spinel compositions of the entire dataset and in conjunction with back-scattered electron imaging, from core to rim, three spinel stages have been recognized: the residual mantle stage, a Cr-rich stage and a third stage showing a very narrow magnetite rim. These three stages are represented by primary Cr-spinel, pre-serpentinization metamorphosed spinel and syn- or post-serpentinization spinel, respectively. The chemical characteristics of primary (first-stage) Cr-spinels of both serpentinite groups indicate a tectonic affinity within a fore-arc setting of peridotite protoliths. The second stage indicates that Cr-spinels have undergone subsolidus re-equilibration as a result of solid–solid reaction during pre-serpentinization cooling of the host rock. Here the primary Cr-spinel compositions have been partly or completely obscured by metamorphism. During the third stage, the Cr-spinels have undergone solid–fluid re-equilibration during syn- or post-serpentinization processes. Both the second and third stages point to diachronous metamorphic paths resulting from continuous tectonic evolution influenced by either slow or fast uplift of mantle protoliths. In the fast metamorphic paths, the primary chrome spinels are flanked by a very narrow magnetite rim. The presence of two groups of distally separated serpentinites with different emplacement ages and fore-arc tectonic affinity could indicate that the closure of the Tethys Ocean culminated in two fortuitous subduction processes.

Type
THE ZAGROS OPHIOLITES
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, A. H., Arai, S. & Attia, A. K. 2001. Petrological characteristics of podiform chromitites and associated peridotites of Pan African Proterozoic ophiolite complex of Egypt. Mineralium Deposita 36, 7284.CrossRefGoogle Scholar
Allan, J. F., Sack, R. O. & Batiza, R. 1988. Cr-rich spinels as petrogenetic indicators: MORB-type lavas from the Lamont seamount chain, eastern. American Mineralogist 73, 741–53.Google Scholar
Alt, J. C. & Shanks, W. C. 2003. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur geochemistry and reaction modelling. Geochimica et Cosmochimica Acta 67, 641–53.Google Scholar
Alvarez, W. 2010. Protracted continental collisions argue for continental plates driven by basal traction. Earth and Planetary Science Letters 296, 434–42.CrossRefGoogle Scholar
Arai, S. 1992. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineralogical Magazine 56, 173–84.CrossRefGoogle Scholar
Arai, S. 1994. Compositional variation of olivine-chromian spinel in Mg-rich magma as guide of residual spinel peridotites. Journal of Volcanology and Geothermal Research 59, 279–93.CrossRefGoogle Scholar
Aswad, K. J. 1999. Arc-continent collision in Northeastern Iraq as evidenced by Mawat and Penjwin Ophiolite Complexes. Rafidain Journal of Science 10, 5161.Google Scholar
Aswad, K. J. & Elias, E. M. 1988. Petrogenesis, geochemistry and metamorphism of spilitized subvolcanic rocks of the Mawat Ophiolite Complex, NE Iraq. Ofiolitti 13, 95109.Google Scholar
Aziz, N. R., Aswad, K. J. & Koyi, H. A. 2011. Contrasting settings of serpentinite bodies in the northwestern Zagros Suture Zone, Kurdistan Region, Iraq. Geological Magazine 148, 819–37. Published online 11 July 2011. doi:10.1017/S0016756811000409.CrossRefGoogle Scholar
Aziz, N. R., Elias, E. M. & Aswad, K. J. 2011. Rb–Sr and Sm–Nd isotope study of serpentinites and their impact on the tectonic setting of Zagros Suture Zone, NE-Iraq. Iraqi Bulletin of Geology and Mining 7, 6775.Google Scholar
Babaei, A., Babaie, H. A. & Arvin, M. 2005. Tectonic evolution of the Neyrez ophiolite, Iran: an accretionary prism model. Ofioliti 30, 6574.Google Scholar
Babaie, H. A., Babaei, A., Ghazi, A. M. & Arvin, M. 2006. Geochemical, 40Ar/39Ar age and isotopic data for crustal rocks of the Neyriz ophiolite, Iran. Canadian Journal of Earth Sciences 43, 5770.CrossRefGoogle Scholar
Babaie, H. A., Ghazi, A. M., Babaei, A., La Tour, T. E. & Hassanipak, A. A. 2001. Geochemistry of arc volcanic rocks of the Zagros crust zone, Neyriz, Iran. Journal of Asian Earth Sciences 19, 6176.CrossRefGoogle Scholar
Barnes, S. J. & Roeder, P. L. 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology 42, 2279–302.Google Scholar
Boillot, G., Feraud, G., Recq, M. & Girardeau, J. 1989. Undercrusting by serpentinite beneath rifted margins. Nature 341, 523–5.CrossRefGoogle Scholar
Buday, T. 1980. The Regional Geology of Iraq. Stratigraphy and Palaeogeography. Baghdad: Publications of GEOSURV 1, 445 pp.Google Scholar
Buday, T. & Jassim, S. Z. 1987. The Regional Geology of Iraq. Tectonism, Magmatism and Metamorphism. Baghdad: Publications of GEOSURV 1, 352 pp.Google Scholar
Cannat, M., Bideau, D. & Bougault, H. 1992. Serpentinized peridotites and gabbros in the Mid-Atlantic Ridge axial valley at 15°37′N and 16°52′N. Earth and Planetary Science Letters 109, 87106.Google Scholar
Cannat, M., Lagabrielle, Y., Bougault, H., Casey, J., De Coutures, N., Dmitriev, L. & Fouquet, Y. 1997. Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: geological mapping in the 15 degrees N region. Tectonophysics 279, 193213.Google Scholar
Cookenboo, H. O., Bustin, R. M. & Wilks, K. R. 1997. Detrital chromian spinel compositions used to reconstruct the tectonic setting of provenance implications for orogeny in the Canadian Cordillera. Journal of Sedimentary Research 67, 116–23.Google Scholar
Dhannoun, H. Y., Al-Dabbagh, S. M. A. & Hasso, A. 1988. The geochemistry of the Gercus Red Bed Formation of Northeast Iraq. Chemical Geology 69, 8793.Google Scholar
Dick, H. J. B. & Bullen, T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86, 5476.Google Scholar
Evans, B. W. & Frost, B. R. 1975. Chrome-spinel in progressive metamorphism – a preliminary analysis. Geochimica et Cosmochimica Acta 39, 959–72.Google Scholar
Fabriès, J., Bodinier, J.-L., Dupuy, C., Lorand, J. P. & Benkerrou, C. 1989. Evidence for model metasomatism in the orogenic spinel lherzolite body from Caussou (Northeastern Pyrenees, France). Journal of Petrology 30, 199228.CrossRefGoogle Scholar
Fakhari, M. D., Axen, G. J., Horton, B. K., Hassanzadeh, J. & Amini, A. 2008. Revised age of proximal deposits in the Zagros foreland basin and implications for Cenozoic evolution of the High Zagros. Tectonophysics 451, 170–85.CrossRefGoogle Scholar
Fryer, P. 1992. A synthesis of Leg 125 drilling of serpentine seamounts on the Mariana and Izu-Bonin forearcs. In Proceedings of the Ocean Drilling Program Scientific Results, vol. 125 (eds Fryer, P., Pearce, J. A., Stocking, L. D., et al. ), pp. 593614. College Station, Texas.Google Scholar
Gharib, F. & De Wever, P. 2010. Radiolaires mésozoïques de la formation de Kermanshah (Iran). Comptes Rendus Palevol 9, 209–19.Google Scholar
Hebert, R., Hekinian, R. & Bideau, D. 1997. Primitive intratransform volcanism at Garrett Transform Fault (East Pacific Rise). Canadian Journal of Earth Sciences 34, 1101–17.Google Scholar
Horton, B. K., Hassanzadeh, J., Stockli, D. F., Axen, G. J., Gillis, R. J., Guest, B., Amini, A., Fakhari, M., Zamanzadeh, S. M. & Grove, M. 2008. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: implications for chronostratigraphy and collisional tectonics. Tectonophysics 451, 97122.CrossRefGoogle Scholar
Irvine, T. N. 1967. Chromian spinel as a petrogenetic indicator, Part II. Petrological applications. Canadian Journal of Earth Sciences 4, 71103.Google Scholar
Jackson, E. D. 1969. Chemical variation in coexisting chromite and olivine in chromitite zones of the Stillwater Complex. Economic Geology Monograph 4, 4171.Google Scholar
Jassim, S. Z. & Buday, T. 2006. Units of the unstable shelf and the Zagros Suture, Chapter 6. In Geology of Iraq (eds Jassim, S. Z. & Goff, J. C.), pp. 7183. Brno, Czech Republic: Dolin, Prague and Moravian Museum.Google Scholar
Jassim, S. Z., Buday, T., Cicha, I. & Opletal, M. 2006. Tectonostratigraphy of the Zagros Suture, Chapter 16. In Geology of Iraq (eds Jassim, S. Z. & Goff, J. C.), pp. 199211. Brno, Czech Republic: Dolin, Prague and Moravian Museum.Google Scholar
Karim, K. H., Fatah, A. I., Ibrahim, A. O. & Koyi, H. A. 2009. Historical development of the present day lineaments of the western Zagros fold-thrust belts: a case study from Northeastern Iraq, Kurdistan Region. Iraqi Journal of Earth Science 9, 5570.Google Scholar
Koyi, H. A. 1988. Experimental modeling of the role of gravity and lateral shortening in the Zagros mountain belt. American Association of Petroleum Geologists Bulletin 72, 1381–94.Google Scholar
Lee, Y. I. 1999. Geotectonic significant of detrital chromian spinel: a review. Geosciences Journal 3, 23–9.Google Scholar
Lehmann, J. 1983. Diffusion between olivine and spinel: application to geothermometry. Earth and Planetary Science Letters 64, 123–38.Google Scholar
Lindquist, E. S. & Goodman, R. E. 1994. The strength and deformation properties of aphysical model mélange. In Proceedings of the First North American Rock Mechanics Symposium (NARMS), Austin, Texas (eds Nelson, P. P. & Laubach, S. E.), pp. 843–50. Rotterdam: A.A. Balkema.Google Scholar
Michael, P. J., Langmuir, C. H., Dick, J. B. H., Snow, J. E., Goldstein, S. L., Graham, D. W., Lehnert, K., Kurras, G., Jokat, W., Muhe, R. & Edmonda, H. N. 2003. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean, Nature 423, 956–61.CrossRefGoogle Scholar
Moghadam, H. S., Rahgoshay, M. & Forouzesh, V. 2009. Geochemical investigation of nodular chromites in the Forumad ophiolite, NE Iran. Iranian Journal of Science & Technology Transaction A. 33 (A1), 103–8.Google Scholar
Moghadam, H. S. & Stern, R. J. 2010. Late Cretaceous forearc ophiolites of Iran. Island Arc 20, 14.Google Scholar
Nicolas, A. 1985. Novel type of crust produced during continental rifting. Nature 315, 112–15.CrossRefGoogle Scholar
Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G. & Jolivet, L. 2008. Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos 106, 380–98.Google Scholar
O'neill, H. S. T. C. 1981. The transition between spinel lherzolite and garnet lherzolite and its use as a geobarometer. Contributions to Mineralogy and Petrology 77, 185–94.Google Scholar
O'neill, H. S. T. C. & Wood, B. J. 1979. An experimental study of partitioning between garnet and olivine and its calibration as a geothermometer. Contributions to Mineralogy and Petrology 70, 5970.CrossRefGoogle Scholar
Parkinson, I. J. & Pearce, J. A. 1998. Peridotites from the Izu-Bonin-Mariana forarc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a suprasubduction zone setting. Journal of Petrology 39, 1577–618.CrossRefGoogle Scholar
Pober, E & Faupl, P. 1988. The chemistry of detrital chromian spinels and its implications for the geodynamic evolution of the eastern Alps. Geologische Rundschau 77, 641–67.Google Scholar
Proenza, J. A., Ortega-Gutierrez, F., Camprubi, A., Tritlla, J., Elias-Herrera, M. & Reyes-Salas, M. 2004. Paleozoic serpentinite-enclosed chromitites from Tehuitzingo (Acatlan Complex, southern Mexico): a petrological and mineralogical study.Journal of South American Earth Sciences 16, 649–66.CrossRefGoogle Scholar
Quick, J. E. & Gregory, R. T. 1995. Significance of melt-wall rock reaction: a comparative anatomy of three ophiolites. Journal of Geology 103, 187–98.CrossRefGoogle Scholar
Roeder, P. L. 1994. Chromite from the fiery rain of chondrules to Kilauea lava lake. The Canadian Mineralogist 32, 729–46.Google Scholar
Roeder, P. L., Campbell, I. H. & Jamieson, H. E. 1979. A re-evaluation of the olivine-spinel geothermometer. Contributions to Mineralogy and Petrology 68, 325–34.CrossRefGoogle Scholar
Sack, R. O. & Ghiorso, M. S. 1991. Chromian spinel as petrogenetic indicators: thermodynamics and petrological applications. American Mineralogist 76, 827–47.Google Scholar
Takahashi, N. & Arai, S. 1989. Textural and chemical features of chromian spinel–pyroxene symplectites in the Horoman peridotites, Hokkaido, Japan. Science Reports of the Institute of Geoscience, University of Tsukuba, Section B 10, 4555.Google Scholar
Stevens, R. E. 1944. Composition of some chromites of the western hemisphere. American Mineralogist 29, 134.Google Scholar
Whitmarsh, R. B., Manatschal, G. & Minshull, T. A. 2001. Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature 413, 150–4.Google Scholar