Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T05:57:38.012Z Has data issue: false hasContentIssue false

Conodont biostratigraphy of the mid-Carboniferous boundary in Western Ireland

Published online by Cambridge University Press:  22 April 2015

PETER FALLON*
Affiliation:
Earth and Ocean Sciences, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland
JOHN MURRAY
Affiliation:
Earth and Ocean Sciences, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland
*
*Author for correspondence: [email protected]

Abstract

Two stratigraphic sections spanning the mid-Carboniferous boundary were examined in the Clare Shale Formation of the Shannon Basin in Western Ireland. Calcareous nodules intermittently occur within these generally non-calcareous organic-rich shales, and these have yielded Serpukhovian and Bashkirian conodont elements. The biostratigraphic range of the Irish material is illustrated here for the first time. Results show that the mid-Carboniferous and Arnsbergian–Chokierian boundaries are coincident at Ballybunion. Gnathodus girtyi is restricted to the lower part of the Serpukhovian Stage (Late Mississippian), while G. bilineatus bollandensis persists into much younger strata, close to the first occurrence of Declinognathodus noduliferus s.l. One element belonging to G. postbilineatus is also present. These findings support the argument that D. noduliferus s.l. developed from G. b. bollandensis, rather than from G. girtyi. The biostratigraphical tool for the identification of the mid-Carboniferous boundary globally, and the suitability of the section at Arrow Canyon, USA as a GSSP, may therefore need to be reassessed.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, H. A. & Brasier, M. D. 2005. Microfossils, Second Edition. Oxford: Blackwell Publishing. 296 pp.Google Scholar
Austin, R. L. 1972. Problems of conodont taxonomy with special reference to Upper Carboniferous forms. Geologica et Palaeontologica 1, 115–26.Google Scholar
Barham, M., Joachimski, M. M., Murray, J. & Williams, D. M. 2012. The onset of the Permo-Carboniferous glaciation: reconciling global stratigraphic evidence with biogenic apatite δ18O records in the late Visean. Journal of the Geological Society 169, 119–22.Google Scholar
Barham, M., Murray, J., Sevastopulo, G. D. & Williams, D. M. 2015. Conodonts of the genus Lochriea in Ireland and the recognition of the Viséan–Serpukhovian (Carboniferous) boundary. Lethaia 48 (2), 151–71.Google Scholar
Barnett, A. J. & Wright, V. P. 2008. A sedimentological and cyclostratigraphic evaluation of the completeness of the Mississippian–Pennsylvanian (Mid-Carboniferous) global stratotype section and point, Arrow Canyon, Nevada, USA. Journal of the Geological Society 165 (4), 859–73.Google Scholar
Bischoff, G. C. O. 1957. Die Conodonten-Stratigraphie des rhenoherzynischen Unterkarbons mit Berücksichtigung der Wocklumeria-Stufe und der Devon/Karbon-Grenze. Abhandlungen des Hessischen Landesamt für Bodenforschung 19, 164.Google Scholar
Bishop, J. W., Montanez, I. P., Gulbranson, E. L. & Brenckle, P. L. 2009. The onset of mid-Carboniferous glacio-eustasy: Sedimentologic and diagenetic constraints, Arrow Canyon, Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology 276 (1), 217–43.Google Scholar
Blakey, R. C. 2008. Gondwana paleogeography from assembly to breakup – a 500 m.y. odyssey. In Resolving the Late Paleozoic Ice Age in Time and Space (eds Fielding, C. R., Frank, T. D. & Isbell, J. L.), pp. 128. The Geological Society of America, Special Paper 441, Boulder, Colorado.Google Scholar
Braithwaite, K. 1993. Stratigraphy of a Mid-Carboniferous section at Inishcorker, Ireland. Annales de la Societe Geologique de Belgique 116, 209–19.Google Scholar
Branson, E. B. & Mehl, M. G. 1941. New and little known Carboniferous conodont genera. Journal of Paleontology 15, 97106.Google Scholar
Brenckle, P. L., Baesemann, J. F., Lane, H. R., West, R. R., Webster, G. D., Langenheim, R. L., Brand, U. & Richard, B. C. 1997a. Arrow Canyon, the Mid-Carboniferous Boundary Stratotype. In Paleoforams ‘97 Guidebook: Post-Conference Field Trip to the Arrow Canyon Range, Southern Nevada U. S. A. (eds Brenckle, P. L. & Page, W. R.), pp. 1332. Cushman Foundation Foraminiferal Research Supplement to Special Publication No. 36.Google Scholar
Brenckle, P. L., Baesemann, J. F., Lane, H. R., West, R. R., Webster, G. D., Langenheim, R. L., Brand, U. & Richard, B. C. 1997b. Arrow Canyon, the Mid-Carboniferous Boundary Stratotype. Proccedings of XIIIth International Congress, Carboniferous Stratigraphy and Geology, Part 3. Krakow, 1995, pp. 149–64.Google Scholar
Buggisch, W., Joachimski, M. M., Sevastopulo, G. & Morrow, J. R. 2008. Mississippian δ13Ccarb and conodont apatite δ18O records – their relation to the Late Palaeozoic Glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 268 (3–4), 273–92.Google Scholar
Collinson, J. D., Martinsen, O., Bakken, B. & Kloster, A. 1991. Early fill of the Western Irish Namurian Basin: a complex relationship between turbidites and deltas. Basin Research 3 (4), 223–42.Google Scholar
Davies, N. S. & Gibling, M. R. 2013. The sedimentary record of Carboniferous rivers: Continuing influence of land plant evolution on alluvial processes and Palaeozoic ecosystems. Earth-Science Reviews 120, 4079.Google Scholar
Davies, S. J., Guion, P. D. & Gutteridge, P. 2012. Carboniferous sedimentation and volcanism on the Laurussian Margin. In Geological History of Britain and Ireland, Second Edition (eds Woodcock, N. H. & Strachan, R.), pp. 231–73. Chichester: Wiley-Blackwell.Google Scholar
Dean, M. T., Browne, M. A. E., Waters, C. N. & Powell, J. H. 2011. A Lithostratigraphical Framework for the Carboniferous Successions of Northern Great Britain (Onshore). London: British Geological Survey, 165 pp.Google Scholar
Dunn, D. L. 1966. New Pennsylvanian platform conodonts from southwestern United States. Journal of Paleontology, 40 (6), 1294–303.Google Scholar
Ellison, S. P. & Graves, R. W. 1941. Lower Pennsylvanian (Dimple limestone) conodonts of the Marathon region, Texas. Missouri University School of Mines and Metallurgy, Bulletin of Technical Services 14, 113.Google Scholar
Frakes, L. A., Francis, J. E. & Syktus, J. I. 1992. Climate modes of the Phanerozoic. New York: Cambridge University Press, 274 pp.CrossRefGoogle Scholar
Gibling, M. R. & Davies, N. S. 2012. Palaeozoic landscapes shaped by plant evolution. Nature Geoscience 5 (2), 99105.Google Scholar
Globensky, Y. 1967. Middle and Upper Mississippian conodonts from the Windsor Group of the Atlantic provinces of Canada. Journal of Paleontology 41 (2), 432–48.Google Scholar
Grayson, R. C., Merrill, G. K. & Lambert, L. L. 1990. Carboniferous gnathodontid conodont apparatuses: evidence of a dual origin for Pennsylvanian taxa. Courier Forschungsinstitut Senckenberg 118, 353–96.Google Scholar
Grossman, E. L., Yancey, T. E., Jones, T. E., Bruckschen, P., Chuvashov, B., Mazzullo, S. J. & Mii, H.-S. 2008. Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: the isotopic record from low latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology 268 (3), 222–33.CrossRefGoogle Scholar
Guion, P. D., Gutteridge, P. & Davies, S. J. 2000. Carboniferous sedimentation and volcanism on the Laurussian margin. In Geological History of Britain and Ireland (eds Woodcock, N. & Strachan, R.), pp. 227–70. Oxford: Blackwell Science.Google Scholar
Harris, R. W. & Hollingsworth, R. V. 1933. New Pennsylvanian conodonts from Oklahoma. American Journal of Science 25 (147), 193204.Google Scholar
Hass, W. H. 1953. Conodonts of the Barnett Formation of Texas. US Geological Survey Professional Paper no. 243, 69–94.Google Scholar
Heckel, P. H. & Clayton, G. 2006. The Carboniferous System. Use of the new official names for the subsystems, series, and stages. Geologica Acta 4 (3), 403–7.Google Scholar
Higgins, A. C. 1975. Conodont zonation of the late Viséan-early Westphalian strata of the south and central Pennines of northern England. Bulletin of the Geological Survey of Great Britain 53, 190.Google Scholar
Higgins, A. C. & Bouckaert, J. 1968. Conodont stratigraphy and palaeontology of the Namurian of Belgium. Memoires pour server a l’explication des Cartes Geologiques et Minieres de la Belgique 10, 164.Google Scholar
Hodson, F. 1953. The beds above the Carboniferous Limestone in north-west County Clare, Eire. Quarterly Journal of the Geological Society 109 (1–4), 259–83.Google Scholar
Hodson, F. 1954. The Carboniferous rocks of Foynes Island, County Limerick. Geological Magazine 91, 153–60.Google Scholar
Hodson, F. & Lewarne, G. C. 1961. A mid-Carboniferous (Namurian) basin in parts of the counties of Limerick and Clare, Ireland. Quarterly Journal of the Geological Society 117 (1–4), 307–33.CrossRefGoogle Scholar
Igo, H. & Koike, T. 1964. Carboniferous conodonts from the Omi Limestone, Niigata Prefecture, central Japan (Studies of Asian conodonts, Pt. 1). Transactions and Proceedings of the Paleontological Society of Japan 53, 179–93.Google Scholar
Isbell, J. L., Lenaker, P. A., Askin, R. A., Miller, M. F. & Babcock, L. E. 2003. Reevaluation of the timing and extent of late Paleozoic glaciation in Gondwana: Role of the Transantarctic Mountains. Geology 31 (11), 977–80.Google Scholar
Lane, H. R. 1967. Uppermost Mississippian and Lower Pennsylvanian conodonts from the type Morrowan region, Arkansas. Journal of Paleontology 41 (4), 920–42.Google Scholar
Lane, H. R., Brenckle, P. L., Baesemann, J. F. & Richards, B. 1999. The IUGS boundary in the middle of the Carboniferous: Arrow Canyon, Nevada, USA. Episodes 22 (4), 272–83.Google Scholar
Leeder, M. R. 1982. Upper Palaeozoic basins of the British Isles: Caledonide inheritance versus Hercynian plate Margin processes. Journal of the Geological Society, London 139, 479–91.CrossRefGoogle Scholar
Leeder, M. R. 1987. Tectonic and palaeogeographic models for Lower Carboniferous in Europe. In: European Dinantian Environments (eds Miller, J., Adams, A. E. & Wright, V. P.), pp. 120. London: J. Wiley & Sons.Google Scholar
Martinsen, O. J. & Collinson, J. D. 2002. The Western Irish Namurian Basin reassessed–a discussion. Basin Research 14 (4), 523–42.Google Scholar
McGhee, G. R., Sheehan, P. M., Bottjer, D. J. & Droser, M. L. 2012. Ecological ranking of Phanerozoic biodiversity crises: the Serpukhovian (early Carboniferous) crisis had a greater ecological impact than the end-Ordovician. Geology 40, 147–50.Google Scholar
Mii, H.-S., Grossman, E. L. & Yancey, T. E. 1999. Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation. Geological Society of America Bulletin 111 (7), 960–73.Google Scholar
Nemirovskaya, T. I. & Nigmadganov, I. M. 1994. The Mid-Carboniferous conodont Event. Courier Forschungsinstitut Senckenberg 168, 319–33.Google Scholar
Nemirovskaya, T., Perret, M. T. & Meischner, D. 1994. Lochriea ziegleri and Lochriea senckenbergica – new conodont species from the latest Visèan and Serpukhovian in Europe. Courier Forschungsinstitut Senckenberg 168, 311–17.Google Scholar
Nemyrovska, T. I. 1999. Bashkirian conodonts of the Donets basin, Ukraine. Scripta Geologica 119, 1115.Google Scholar
Nigmadganov, I. M. & Nemirovskaya, T. I. 1992. Novye vidy konodontov iz pogranichnykh otlozhenij nizhnego I srednego karbona Yuzhnogo Tian-Shanya. (New species of conodonts from the boundary deposits of the Lower/Middle Carboniferous of the South Tienshan.) Paleontologicheskogo Zhurnal 3, 51–7.Google Scholar
Pointon, M. A., Cliff, R. A. & Chew, D. M. 2012. The provenance of Western Irish Namurian Basin sedimentary strata inferred using detrital zircon U–Pb LA-ICP-MS geochronology. Geological Journal 47 (1), 7798.CrossRefGoogle Scholar
Purnell, M. A., Donoghue, P. C. J. & Aldridge, R. J. 2000. Orientation and anatomical notation in conodonts. Journal of Paleontology 74 (1), 113–22.Google Scholar
Richards, B. C., Aretz, M., Barnett, A., Barskov, I., Blanco-Ferrera, S., Brenckle, P. L., Clayton, G., Dean, M., Ellwood, B., Gibshman, N., Hecker, M., Konovalova, V. A., Korn, D., Kulagina, E., Lane, R., Mamet, B., Nemyrovska, T., Nikolaeva, S. V., Pazukhin, V., Qi, Y.-P., Sanz-López, J., Saltzman, M. R., Titus, A., Utting, J. & Wang, X. 2011. Report of the Task Group to establish a GSSP close to the existing Viséan–Serpukhovian boundary. Newsletter on Carboniferous Stratigraphy 29, 2630.Google Scholar
Rider, M. H. 1974. The Namurian of West County Clare. Proceedings of the Royal Irish Academy. Section B: Biological, Geological, and Chemical Science 74B, 125–42.Google Scholar
Riley, N. J. 1993. Dinantian (Lower Carboniferous) biostratigraphy and chronostratigraphy in the British Isles. Journal of the Geological Society 150 (3), 427–46.Google Scholar
Riley, N. J., Claoué-Long, J., Higgins, A. C., Owens, B., Spears, A., Taylor, L. & Varker, W. J. 1994. Geochronometry and geochemistry of the European mid-Carboniferous boundary global stratotype proposal, Stonehead Beck, North Yorkshire, UK. Annales de la Societe Geologique de Belgique 116, 275–89.Google Scholar
Riley, N. J., Varker, J., Owens, B., Higgins, A. C. & Ramsbottom, W. H. C. 1987. Stonehead Beck, Cowling, North Yorkshire, England: a British proposal for the Mid-Carboniferous boundary stratotype. In Selected Studies in Carboniferous Paleontology and Biostratigraphy (eds Brenckle, P. L., Lane, H. R. & Manger, W. L.), pp. 159–77. Frankfurt am Main: Senckenbergische Naturforschende Gesellschaft. Courier Forschunginstitut Senckenberg 98.Google Scholar
Roundy, P. V. 1926. The micro-fauna in Mississippian formations of San Saba County, Texas. US Geological Survey, Professional Paper no. 146, 63 pp.Google Scholar
Saltzman, M. R. 2003. Late Paleozoic ice age: Oceanic gateway or pCO2 ? Geology 31 (2), 151–54.Google Scholar
Sanz-López, J. & Blanco-Ferrera, S. 2013. Early evolution of Declinognathodus close to the Mid-Carboniferous Boundary interval in the Barcaliente type section (Spain). Palaeontology 56 (5), 927–46.Google Scholar
Sanz-López, J., Blanco-Ferrera, S., García-López, S. & Sánchez de Posada, L. C. 2006. The Mid-Carboniferous Boundary in Northern Spain: difficulties for correlation of the global stratotype section and point. Rivista Italiana di Paleontologia e Stratigrafia 112 (1), 322.Google Scholar
Sanz-López, J., Blanco-Ferrera, S., García-López, S. & Sánchez de Posada, L. C. 2013. Conodont chronostratigraphical resolution and Declinognathodus evolution close to the Mid-Carboniferous Boundary in the Barcaliente Formation type section, NW Spain. Lethaia 46 (4), 438–53.Google Scholar
Sevastopulo, G. D. 2009. Carboniferous: Mississippian (Serpukhovian) and Pennsylvanian. In The Geology of Ireland, Second Edition (eds Holland, C. H. & Sanders, I. S.), pp. 269–94. Edinburgh: Dunedin Academic Press Ltd. Google Scholar
Sevastopulo, G. D. & Barham, M. 2014. Correlation of the base of the Serpukhovian Stage (Mississippian) in NW Europe. Geological Magazine 151 (2), 244–53.CrossRefGoogle Scholar
Sevastopulo, G. D. & Wyse Jackson, P. N. 2009. Carboniferous: Mississippian (Tournaisian and Viséan). In The Geology of Ireland, Second Edition (eds Holland, C. H. & Sanders, I. S.), pp. 215–68. Edinburgh: Dunedin Academic Press Ltd. Google Scholar
Sleeman, A. G. & Pracht, M. 1999. Geology of the Shannon Estuary. A geological description of the Shannon Estuary Region including parts of Clare, Limerick and Kerry, to accompany the Bedrock Geology 1:100,000 Scale Map Series, Sheet 17, Shannon Estuary, with contributions by K. Claringbold, and G. Stanley (minerals), J. Deakin and G. Wright (Groundwater), O. Bloetjes and R. Creighton (Quaternary). Geological Survey of Ireland, 77 pp.Google Scholar
Smith, L. B. & Read, J. F. 2000. Rapid onset of late Paleozoic glaciation on Gondwana: Evidence from Upper Mississippian strata of the Midcontinent, United States. Geology 28 (3), 279–82.Google Scholar
Somerville, I. D. 2008. Biostratigraphic zonation and correlation of Mississippian rocks in Western Europe: some case studies in the late Viséan/Serpukhovian. Geological Journal 43, 209–40.Google Scholar
Somerville, I. D. & Strogen, P. 1992. Ramp sedimentation in the Dinantian limestones of the Shannon Trough, Co. Limerick, Ireland. Sedimentary Geology 79 (1), 5975.Google Scholar
Stibane, F. R. 1967. Conodonten des Karbons aus den nördlichen Anden Südamerikas. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 128, 329–40.Google Scholar
Strogen, P. 1988. The Carboniferous lithostratigraphy of southeast County Limerick, Ireland, and the origin of the Shannon Trough. Geological Journal 23 (2), 121–37.Google Scholar
Strogen, P., Somerville, I. D., Pickard, N. A. H., Jones, G. L. L. & Fleming, M. 1996. Controls on ramp, platform and basinal sedimentation in the Dinantian of the Dublin Basin and Shannon Trough, Ireland. In: Recent Advances in Lower Carboniferous Geology (eds Strogen, P., Somerville, I. D. & Jones, G. L. L.), pp. 263–79. Geological Society, London, Special Publication no. 107.Google Scholar
Varker, W. J. 1994. Multielement conodont faunas from the proposed Mid-Carboniferous boundary stratotype locality at Stonehead Beck, Cowling, North Yorkshire, England. Annales de la Société Géologique de Belgique 116, 301–21.Google Scholar
Varker, W. J., Owens, B. & Riley, N. J. 1990. Integrated biostratigraphy for the proposed mid-Carboniferous boundary stratotype, Stonehead Beck, Cowling, North Yorkshire, England. Courier Forschungsinstitut Senckenberg 130, 221–35.Google Scholar
Veevers, J. J. & Powell, C. M. 1987. Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica. Geological Society of America Bulletin 98 (4), 475–87.Google Scholar
Warr, L. N. 2012. The Variscan Orogeny: the Welding of Pangaea. In Geological History of Britain and Ireland, 2nd Edition (eds Woodcock, N. H. & Strachan, R.), pp. 274–98. Chichester: Wiley-Blackwell.Google Scholar
Waters, C. N. & Condon, D. J. 2012. Nature and timing of Late Mississippian to Mid-Pennsylvanian glacio-eustatic sea-level changes of the Pennine Basin, UK. Journal of the Geological Society 169 (1), 3751.Google Scholar
Waters, C. N., Somerville, I. D., Stephenson, M. H., Cleal, C. J. & Long, S. L. 2011. Chapter 3 Biostratigraphy. In A Revised Correlation of Carboniferous rocks in the British Isles (eds Waters, C. N., Somerville, I. D., Jones, N. S., Cleal, C. J., Collinson, J. D., Waters, R. A., Besly, B. M., Dean, M. T., Stephenson, M. H., Davies, J. R., Freshney, E. C., Jackson, D. I., Mitchell, W. I., Powell, J. H., Barclay, W. J., Browne, M. A. E., Leveridge, B. E., Long, S. L. & McLean, D.), pp. 1122. Geological Society of London, Special Report no. 26.Google Scholar
Wignall, P. B. & Best, J. L. 2000. The western Irish Namurian basin reassessed. Basin Research 12 (1), 5978.Google Scholar
Willis, K. & McElwain, J. 2013. The Evolution of Plants, Second Edition. Oxford: Oxford University Press, 424 pp.Google Scholar
Wright, V. P. & Vanstone, S. D. 2001. Onset of Late Palaeozoic glacio-eustasy and the evolving climates of low latitude areas: a synthesis of current understanding. Journal of the Geological Society 158 (4), 579–82.Google Scholar
Supplementary material: PDF

Fallon and Murray supplementary material

Tables S1-S6 and Figures S1-S7

Download Fallon and Murray supplementary material(PDF)
PDF 4.6 MB