Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T16:00:21.606Z Has data issue: false hasContentIssue false

Composite ichnofabrics and tiering of burrows

Published online by Cambridge University Press:  01 May 2009

R. G. Bromley
Affiliation:
Geologisk Centralinstitut, Øster Voldgade 10, 1350 Copenhagen K, Denmark
A. A. Ekdale
Affiliation:
University of Utah, Salt Lake City, Utah 84112, U.S.A.

Abstract

Infaunal communities in marine environments typically are tiered; that is, different taxa live at different depths within the sediment. Tiered suites of biogenic structures yield complex biogenic sedimentary fabrics (ichnofabrics), with the traces of deep-burrowing organisms overprinted on those of shallow-burrowing organisms. Careful analysis of crosscutting relationships of burrows in such composite ichnofabrics allows reconstruction of the tiered nature of fossil endobenthic communities. It is important to recognize that the best preserved and most prominently displayed trace fossils in most assemblages usually represent the deepest tier. Thus, they were farther removed from the sea floor and therefore less indicative of actual sea floor conditions than the more poorly preserved traces of the shallower tiers, on which the deeper traces are juxtaposed.

Type
Articles
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, O. 1935. Vorzeitliche Lebensspuren. Jena: Gustav Fischer, 644 pp.Google Scholar
Ausich, W. I. & Bottjer, D. J. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science 216, 173–4.CrossRefGoogle ScholarPubMed
Berger, W. H., Ekdale, A. A. & Bryant, P. F. 1979. Selective preservation of burrows in deep-sea carbonates. Marine Geology 32, 205–30.CrossRefGoogle Scholar
Brenner, K. & Seilacher, A. 1978. New aspects about the origin of the Toarcian Posidonia Shales. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 157, 1118.Google Scholar
Bottjer, D. J. & Ausich, W. I. 1982. Tiering and sampling requirements in paleocommunity recontructions. Third North American Paleontological Convention Proceedings 1, 57–9.Google Scholar
Bromley, R. G. 1967. Some observations on burrows of thalassinidean Crustacea in chalk hardgrounds. Quarterly Journal of the Geological Society of London 123, 157–82.CrossRefGoogle Scholar
Bromley, R. G. 1970. Borings as trace fossils and Entobia cretacea Portlock as an example. In Trace Fossils (ed.Crimes, T. P. and Harper, J. C.), pp. 4990. Liverpool: Seel House Press.Google Scholar
Bromley, R. G. 1975. Trace fossils at omission surfaces. In The Study of Trace Fossils (ed. Frey, R. W.), pp. 399428. New York: Springer-Verlag.CrossRefGoogle Scholar
Bromley, R. G. & Asgaard, U. 1975. Sediment structures produced by a spatangoid echinoid: a problem of preservation. Bulletin of the Geological Society of Denmark 24, 261–81.Google Scholar
Crimes, T. P. 1973. From limestones to distal turbidites: a facies and trace fossil analysis in the Zumaya flysch (Paleocene–Eocene), North Spain. Sedimentology 20, 105–31.CrossRefGoogle Scholar
Crimes, T. P. 1977. Trace fossils of an Eocene deep-sea fan, northern Spain. In Trace Fossils II(ed. Crimes, T. P. and Harper, J. C.), pp. 7190. Liverpool: Seel House Press.Google Scholar
Ekdale, A. A. & Bromley, R. G. 1983. Trace fossils and ichnofabric in the Kjølby Gaard Marl, Upper Cretaceous, Denmark. Bulletin of the Geological Society of Denmark 31, 107–19.Google Scholar
Ekdale, A. A. & Bromley, R. G. 1984. Sedimentology and ichnology of the Cretaceous–Tertiary boundary in Denmark: implications for the causes of the terminal Cretaceous extinction. Journal of Sedimentary Petrology 54, 681703.Google Scholar
FÜrsich, F. T. 1978. The influence of faunal condensation and mixing on the preservation of fossil benthic communities. Lethaia 11, 243–50.CrossRefGoogle Scholar
Goldring, R. 1964. Trace-fossils and the sedimentary surface in shallow-water marine sediments. In Deltaic and Shallow Marine Deposits (ed. van Straaten, L. M. J. U.), pp 136–43. Amsterdam: Elsevier.CrossRefGoogle Scholar
Kaufman, E. G. 1978. Benthic environments and paleoecology of the Posidonienschiefer (Toarcian). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 157, 1836.Google Scholar
Lewis, J. R. 1964. The Ecology of Rocky Shores. London: The English Universities Press, 323 pp.Google Scholar
Morton, J. & Miller, M. 1968. The New Zealand Shore. London, Auckland: Collins, 638 pp.Google Scholar
Nichols, D. 1959. Mode of life and taxonomy in irregular sea urchins. Systematics Association Publication 3, 6180.Google Scholar
Reineck, H. E., Gutmann, W. F. & Hertweck, G. 1967. Das Schlickgebiet südlich Helgoland als Beispiel rezenter Schelfablagerungen. Senckenbergiana Lethaea 48, 219–75.Google Scholar
Reineck, H. E., Singh, I. B. 1973. Depositional Sedimentary Environments. Berlin, Heidelberg, New York: Springer-Verlag, 439 pp.CrossRefGoogle Scholar
Ricketts, E. F., Calvin, J. & Hedgpeth, J. W. 1962. Between Pacific Tides, 3rd ed. Stanford: Stanford University Press, 516 pp.Google Scholar
Seilacher, A. 1953. Über die Methoden der Palichnologie, 1, Studien von Palichnologie. Neues Jahrbuch für Geologic und Paläontologie, Abhandlungen 96, 421–52.Google Scholar
Seilacher, A. 1962. Paleontological studies on turbidite sedimentation and erosion. Journal of Geology 70, 227–34.CrossRefGoogle Scholar
Seilacher, A. 1964. Biogenic sedimentary structures. In Approaches to Paleoecology (ed. Imbrie, J. and Newell, N. D.), pp. 296316. New York, London, Sydney: John Wiley and Sons.Google Scholar
Warme, J. E. 1975. Borings as trace fossils, and the processes of marine bioerosion.In The Study of Trace Fossils (ed. Frey, R. W.), pp. 181227. New York: Springer-Verlag.CrossRefGoogle Scholar
Wetzel, A. 1981. Ökologische und stratigraphische Bedeutung biogener Gefüge in quartären Sedimenten am NW-afrikanischen Kontinentalrand. ‘Meteor’ Fors-chungs-Ergebnisse C34, 147.Google Scholar