Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T03:27:14.163Z Has data issue: false hasContentIssue false

Chambered structures from the Ediacaran Dengying Formation, Yunnan, China: comparison with the Cryogenian analogues and their microbial interpretation

Published online by Cambridge University Press:  29 August 2017

CUI LUO*
Affiliation:
CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, 39 East Beijing Road, 210008 Nanjing, China
BING PAN
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, 210008 Nanjing, China University of Science and Technology of China, 230026 Hefei, China
JOACHIM REITNER
Affiliation:
Department of Geobiology, Centre of Geosciences of the University of Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany
*
Author for correspondence: [email protected]

Abstract

Enigmatic chambered structures have been reported forming reef frames in Cryogenian interglacial carbonates, prior to the commonly acknowledged microbial-metazoan reefs at the terminal Ediacaran, and interpreted as fossils of possible sponge-grade organisms. A better constraint on the affinity of these structures is partly hindered by few analogues in other time periods. This study describes similar structures from peritidal dolostones of the Ediacaran Denying Formation from Yunnan, China. Samples were investigated using optical microscopy and three-dimensional (3-D) reconstruction based on grinding tomography. The Dengying chambered structures are comparable with Cryogenian structures in basic construction, but are not frame building, and show variations in overall shape and inhabiting facies. Two-dimensional (2-D) cross-sections show that thin, homogeneous micritic laminae are the basic building blocks of the chamber walls. Thick walls represent parallel accretion of these laminae, and thin walls developed from the angular growth of a single lamina or merging of multiple laminae. In 3-D space, the laminae primarily correspond to continuous surfaces which sometimes contain sub-circular holes, while a few represent filamentous elements connected to the surfaces. The morphological features and growth pattern of the Dengying chambered structures indicate that they are likely to be calcified microbial constructions rather than skeletal remains of basic metazoans. However, aside from the Cryogenian and Dengying examples, comparable chambered constructions with laminae-based architecture are yet unknown from other fossil or extant microbialites. Further work investigating related structures is needed to determine the microbial consortia and controlling environmental factors that produced these chambered structures.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, S. Y. 2014. Basal Cambrian acritarchs biostratigraphy of the Yangtze Platform, South China. In 2014 GSA Annual Meeting, Vancouver, British Columbia, 19–22 October 2014.Google Scholar
Antcliffe, J. B., Callow, R. H. T. & Brasier, M. D. 2014. Giving the early fossil record of sponges a squeeze. Biological Reviews 89, 9721004.CrossRefGoogle ScholarPubMed
Bosak, T., Bush, J. W. M., Flynn, M. R., Liang, B., Ono, S., Petroff, A. P. & Sim, M. S. 2010. Formation and stability of oxygen-rich bubbles that shape photosynthetic mats: formation and stability of oxygen-rich bubbles. Geobiology 8, 4555.Google Scholar
Bosak, T., Liang, B., Sim, M. S. & Petroff, A. P. 2009. Morphological record of oxygenic photosynthesis in conical stromatolites. Proceedings of the National Academy of Sciences 106, 10939–43.Google Scholar
Brain, C. K. ‘Bob’, Prave, A. R., Hoffmann, K.-H., Fallick, A. E., Botha, A., Herd, D. A., Sturrock, C., Young, I., Condon, D. J. & Allison, S. G. 2012. The first animals: ca. 760-million-year-old sponge-like fossils from Namibia. South African Journal of Science 108, 658–65.Google Scholar
Cherchi, A. & Schroeder, R. 2012. Revision of the holotype of Lithocodium aggregatum Elliott, 1956 (Lower Cretaceous, Iraq): new interpretation as sponge–calcimicrobe consortium. Facies 59, 4957.Google Scholar
Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A. & Jin, Y. 2005. U–Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308 (5718), 95–8.CrossRefGoogle ScholarPubMed
Erwin, D. H. 2015. Was the Ediacaran–Cambrian radiation a unique evolutionary event? Paleobiology 41, 115.Google Scholar
Flügel, E. 2010. Cyanobacteria and calcimicrobes. In Microfacies of Carbonate Rocks, pp. 408–12. Berlin Heidelberg: Springer.Google Scholar
Giddings, J. A., Wallace, M. W. & Woon, E. M. S. 2009. Interglacial carbonates of the Cryogenian Umberatana Group, northern Flinders Ranges, South Australia. Australian Journal of Earth Sciences 56, 907–25.Google Scholar
Grotzinger, J., Adams, E. W. & Schröder, S. 2005. Microbial–metazoan reefs of the terminal Proterozoic Nama Group (c. 550–543 Ma), Namibia. Geological Magazine 142, 499517.CrossRefGoogle Scholar
Grotzinger, J. P., Watters, W. A. & Knoll, A. H. 2000. Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology 26, 334–59.Google Scholar
Hartman, W. D. 1969. New genera and species of coralline sponges (Porifera) from Jamaica. Postilla 137, 139.CrossRefGoogle Scholar
Hartman, W. D. & Goreau, T. F. 1970. Jamaican corralline sponges: their morphology, ecology and fossil relatives. In The Biology of the Porifera (ed. Fry, W. G.), pp. 205–43. Symposia of the Zoological Society of London 25. New York: American Press.Google Scholar
Knoll, A. H., Wörndle, S. & Kah, L. C. 2013. Covariance of microfossil assemblages and microbialite textures across an Upper Mesoproterozoic carbonate platform. Palaios 28, 453–70.Google Scholar
Le Ber, E., Le Heron, D. P., Winterleitner, G., Bosence, D. W. J., Vining, B. A. & Kamona, F. 2013. Microbialite recovery in the aftermath of the Sturtian glaciation: insights from the Rasthof Formation, Namibia. Sedimentary Geology 294, 112.Google Scholar
Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A. & Butterfield, N. J. 2014. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience 7, 257–65.Google Scholar
Maloof, A. C., Rose, C. V., Beach, R., Samuelsson, B. M., Calmet, C. C., Erwin, D. H., Poirier, G. R., Yao, N. & Simons, F. J. 2010. Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nature Geoscience 3, 653–9.Google Scholar
Müller-Wille, S. & Reitner, J. 1993. Palaeobiological reconstruction of selected sphinctozoan sponges from the Cassian Beds (Lower Carnian) of the dolomites (Northern Italy). Berliner Geowissenschafte Abhandlungen (E) 9, 253–81.Google Scholar
Neuweiler, F. & Reitner, J. 1992. Karbonatebänke mit Lithocodium aggregatum Elliott/Bacinella irregularis Radoicic. Paläobathymetrie, paläoökologie und stratigraphisches äquivalent zu thrombolithischen Mud Mounds. Berliner Geowissenschafte Abhandlungen 3, 273–93.Google Scholar
Neuweiler, F., Turner, E. C. & Burdige, D. J. 2009. Early Neoproterozoic origin of the metazoan clade recorded in carbonate rock texture. Geology 37, 475–8.Google Scholar
Penny, A. M., Wood, R., Curtis, A., Bowyer, F., Tostevin, R. & Hoffman, K.-H. 2014. Ediacaran metazoan reefs from the Nama Group, Namibia. Science 344 (6191), 1504–6.Google Scholar
Pratt, B. R. 1984. Epiphyton and Renalcis-diagenetic microfossils from calcification of coccoid blue-green algae. American Association of Petroleum Geologists Bulletin 54, 948–71.Google Scholar
Reitner, J., Wörheide, G., Lange, R. & Schumann-Kindel, G. 2001. Coralline demosponges: a geobiological portrait. Bulletin of the Tohoku University Museum 1, 219–35.Google Scholar
Riding, R. 1991. Calcified Cyanobacteria. In Calcareous Algae and Stromatolites (ed. Riding, R.), pp. 5587. Berlin, Heidelberg: Springer.Google Scholar
Riding, R. & Voronov, A. 1985. Morphological groups and series in Cambrian calcareous algae. In Paleoalgology: Contemporary Research and Applications (eds Toomey, D. F. & Nitecki, M. H.), pp. 5678. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag.Google Scholar
Rivera, M. J. & Sumner, D. Y. 2014. Unraveling the three-dimensional morphology of Archean microbialites. Journal of Paleontology 88, 719–26.Google Scholar
Schlagintweit, F. & Bover-Arnal, T. 2013. Remarks on Bačinella Radoičić, 1959 (type species B. irregularis) and its representatives. Facies 59, 5973.CrossRefGoogle Scholar
Schlagintweit, F., Bover-Arnal, T. & Salas, R. 2010. New insights into Lithocodium aggregatum Elliott 1956 and Bacinella irregularis Radoičić 1959 (Late Jurassic–Lower Cretaceous): two ulvophycean green algae (?Order Ulotrichales) with a heteromorphic life cycle (epilithic/euendolithic). Facies 56, 509–47.Google Scholar
Stearn, C. W. 1975. The stromatoporoid animal. Lethaia 8, 89100.Google Scholar
Stearn, C. W. 2010. Part E, Revised, Volume 4, Chapter 9F: Functional morphology of the Paleozoic stromatoporoid skeleton. Treatise Online 8, 126.Google Scholar
Stearn, C. W., Webby, B. D., Nestor, H. & Stock, C. W. 1999. Revised classification and terminology of Palaeozoic stromatoporoids. Acta Palaeontologica Polonica 44, 170.Google Scholar
Sumner, D. Y. 1997. Late Archean calcite-microbe interactions: two morphologically distinct microbial communities that affected calcite nucleation differently. Palaios 12, 302–18.Google Scholar
Sumner, D. Y. 2000. Microbial vs environmental influences on the morphology of Late Archean fenestrate microbialites. In Microbial Sediments (eds Riding, R. & Awramik, S.), pp. 307–14. Berlin, Heidelberg: Springer.Google Scholar
Turner, E. C., Narbonne, G. M. & James, N. P. 1993. Neoproterozoic reef microstructures from the Little Dal Group, northwestern Canada. Geology 21, 259–62.Google Scholar
Vacelet, J. 2002. Recent ‘Sphinctozoa’, Order Verticillitida, Family Verticillitidae Steinmann, 1882. In Systema Porifera (eds Hooper, J. N. A., Soest, R. W. M. V. & Willenz, P.), pp. 1097–8. New York: Springer US.Google Scholar
Wallace, M. W., Hood, A. V. S., Woon, E. M. S., Giddings, J. A. & Fromhold, T. A. 2015. The Cryogenian Balcanoona reef complexes of the Northern Flinders Ranges: implications for Neoproterozoic ocean chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology 417, 320–36.Google Scholar
Wallace, M. W., Hood, A. V. S., Woon, E. M. S., Hoffmann, K.-H. & Reed, C. P. 2014. Enigmatic chambered structures in Cryogenian reefs: the oldest sponge-grade organisms? Precambrian Research 255, 109–23.Google Scholar
Warren, J. K. 2006. Chapter 1: Interpreting evaporite texture. In Evaporites: Sediments, Resources and Hydrocarbons, pp. 157. Berlin, Heidelberg: Springer.Google Scholar
Wilmeth, D. T., Corsetti, F. A., Bisenic, N., Dornbos, S. Q., Oji, T. & Gonchigdorj, S. 2015. Punctuated growth of microbial cones within Early Cambrian oncoids, Bayan Gol Formation, Western Mongolia. Palaios 30, 836–45.Google Scholar
Wood, A. 1948. Sphaerocodium’ a misinterpreted fossil from the Wenlock limestone. Proceedings of the Geologists’ Association 59, 922, IN2–IN5.Google Scholar
Wood, R. 1991. Non-spicular biomineralization in calcified demosponges. In Fossil and Recent Sponges (eds Reitner, J. & Keupp, H.), pp. 322–40. Berlin, Heidelberg: Springer-Verlag.Google Scholar
Wood, R. & Curtis, A. 2015. Extensive metazoan reefs from the Ediacaran Nama Group, Namibia: the rise of benthic suspension feeding. Geobiology 13, 112–22.Google Scholar
Yang, B., Steiner, M., Zhu, M., Li, G., Liu, J. & Liu, P. 2016. Transitional Ediacaran–Cambrian small skeletal fossil assemblages from South China and Kazakhstan: implications for chronostratigraphy and metazoan evolution. Precambrian Research 285, 202–15.Google Scholar
Yunnan Bureau of Geology and Mineral Resources. 1995. Atlas of the Sedimentary Facies and Palaeogeography of Yunnan. Kunming: Yunnan Science and Technology Press, 210 pp.Google Scholar
Zhu, T. & Luo, A. 1992. First discovery of an oldest Renalcis mound facies and its geological significance – an example from the upper Sinian Dengying Formation in northeastern Yunnan. Sedimentary Geology and Tethyan Geology 1992 (4), 20–8.Google Scholar
Zhu, M., Zhang, J. & Yang, A. 2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology 254, 761.Google Scholar

Luo et al supplementary material

Luo et al supplementary material 1

Download Luo et al supplementary material(Video)
Video 7.1 MB

Luo et al supplementary material

Luo et al supplementary material 2

Download Luo et al supplementary material(Video)
Video 59.4 MB