Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-04T02:42:24.711Z Has data issue: false hasContentIssue false

Carbon-isotope record and palaeoenvironmental changes during the early Toarcian oceanic anoxic event in shallow-marine carbonates of the Adriatic Carbonate Platform in Croatia

Published online by Cambridge University Press:  04 June 2013

NADIA SABATINO*
Affiliation:
Dipartimento di Scienze della Terra e del Mare, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
IGOR VLAHOVIĆ
Affiliation:
University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, HR-10000 Zagreb, Croatia
HUGH C. JENKYNS
Affiliation:
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
GIOVANNA SCOPELLITI
Affiliation:
Dipartimento di Scienze della Terra e del Mare, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
RODOLFO NERI
Affiliation:
Dipartimento di Scienze della Terra e del Mare, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
BOŽO PRTOLJAN
Affiliation:
Croatian Geological Summer School, Panićeva 5, HR-10000 Zagreb, Croatia
IVO VELIĆ
Affiliation:
Croatian Geological Summer School, Panićeva 5, HR-10000 Zagreb, Croatia
*
Author for correspondence: [email protected]

Abstract

Geochemical (δ13C, δ18O and Mn) compositions of Lower Jurassic shallow-water carbonates cropping out in Croatia were analyzed to elucidate the impact of the early Toarcian oceanic anoxic event (T-OAE) on the Adriatic Carbonate Platform (AdCP). The bulk-rock carbon-isotope records through the studied sections (Velebit-A, Velebit-B and Gornje Jelenje) are characterized by two significant excursions: (i) an initial positive trend interrupted by a pronounced negative shift (c. 2.5‰) that is followed by (ii) an increasing trend of positive values (up to 4.5‰). A comparison with δ13C trends obtained from well-calibrated sections from other localities in Europe shows that the overall character of the early Toarcian negative excursion is clearly reproduced in the curves derived from Croatian shallow-water deposits, which helps to date the sequences and reinforces the global character of the carbon-cycle perturbation. Lower Jurassic sedimentary successions in the studied area show a gradual deepening trend corresponding to deposition of the Toarcian spotted limestones. Assuming that the distinctive negative excursion in the carbon-isotope curves is synchronous across the AdCP, the contact between the spotted limestones and the underlying beds rich in lithiotid bivalves appears to be diachronous within the study area. The Mn record through the Croatian Velebit-A section and, in particular, the rise in concentration (up to 100 ppm) coinciding with the beginning of the δ13Ccarb positive shift, reflects a change in the redox conditions in seawater that allowed diagenetic incorporation of reduced manganese into the calcite structure of the carbonate sediment during the onset of the T-OAE.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Suwaidi, A. H., Angelozzi, G. N., Baudin, F., Damborenea, S. E., Hesselbo, S. P., Jenkyns, H. C., Manceñido, M. O. & Riccardi, A. C. 2010. First record of the Early Toarcian Oceanic Anoxic Event from the Southern Hemisphere, Neuquén Basin, Argentina. Journal of the Geological Society, London 167, 633–6.Google Scholar
Amodio, S., Ferrere, V., D'argenio, B., Weissert, H. & Sprovieri, M. 2008. Carbon-isotope stratigraphy and cyclostratigraphy of shallow-marine carbonates: the case of San Lorenzello, Lower Cretaceous of southern Italy. Cretaceous Research 29, 803–13.CrossRefGoogle Scholar
Bassoullet, J. P., Elmi, S., Poisson, A., Cecca, F., Bellion, Y., Guiraud, R. & Baudin, F. 1993. Mid Toarcian. In Atlas Tethys Paleoenvironmental Maps (eds Dercourt, J., Ricou, L.E. & Vrielynck, B.), pp. 6384. BEICIP-FRANLAB, Rueil-Malmaison.Google Scholar
Beerling, D. J., Lomas, M. R. & Gröcke, D. R. 2002. On the nature of methane gas-hydrate dissociation during the Toarcian and Aptian oceanic anoxic events. American Journal of Science 302, 2849.CrossRefGoogle Scholar
Bellanca, A., Masetti, D., Neri, R. & Venezia, F. 1999. Geochemical and sedimentological evidence of productivity cycles recorded in Toarcian black shales from the Belluno Basin, Southern Alps, Northern Italy. Journal of Sedimentary Research 69, 466–76.Google Scholar
Bernoulli, D. 1971. Redeposited pelagic sediments in the Jurassic of the central Mediterranean area. In Colloque du Jurassique Méditerranéen (ed Végh-Neubrandt, E.). Annales Instituti Geologici Publici Hungarici 54/2, 7190.Google Scholar
Bernoulli, D. 1972. North Atlantic and Mediterranean Mesozoic facies: a comparison. In Initial Reports Deep Sea Drilling Project (eds Hollister, C. D., Ewing, J.I. et al.), 11, pp. 801–79. US Government Printing House, Washington, DC. Google Scholar
Bernoulli, D. 2001. Mesozoic–Tertiary carbonate platforms, slopes and basins of the external Apennines and Sicily. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins (eds Vai, G. B. & Martini, I. P.) pp. 307–26. Kluwer Academic Publishers, Dordrecht.Google Scholar
Bernoulli, D. & Jenkyns, H. C. 1974. Alpine, Mediterranean and Central Atlantic Mesozoic facies in relation to the early evolution of the Tethys. In Modern and Ancient Geosynclinal Sedimentation, a Symposium (eds Dott, R. H. & Shaver, R. H.) pp. 129160. Society of Economic Paleontologists and Mineralogists, Special Publication no. 19.CrossRefGoogle Scholar
Brand, U. & Veizer, J. 1981. Chemical diagenesis of multicomponent carbonate system: 2, Stable isotopes. Journal of Sedimentary Research 51, 987–97.Google Scholar
Caruthers, A. H., Gröcke, D. R. & Smith, P. L. 2011. The significance of an Early Jurassic (Toarcian) carbon-isotope excursion in Haida Gwaii (Queen Charlotte Islands), British Columbia, Canada. Earth and Planetary Science Letters 307, 1926.Google Scholar
Cohen, A. S., Coe, A. L., Harding, S. M. & Schwark, L. 2004. Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering. Geology 32, 157–60.Google Scholar
Cohen, A. S., Coe, A. L. & Kemp, D. B. 2007. The Late Palaeocene–Early Eocene and Toarcian (Early Jurassic) carbon isotope excursions: a comparison of their time scales, associated environmental changes, causes and consequences. Journal of Geological Society of London 164, 1093–108.Google Scholar
Corbin, J. C., Person, A., Iatzoura, A., Ferré, B. & Renard, M. 2000. Manganese in pelagic carbonates: indication of major tectonic events during the geodynamic evolution of a passive continental margin (the Jurassic European margin of the Tethys–Ligurian Sea). Palaeogeography, Palaeoclimatology, Palaeoecology 156, 123–38.Google Scholar
D'Argenio, B. 1974. Le piattaforme carbonatiche periadriatiche. Una rassegna di problemi nel quadro geodinamico mesozoico dell'area mediterranea. Memorie della Società Geologica Italiana 13/2, 137–59.Google Scholar
Davey, S. D. & Jenkyns, H. C. 1999. Carbon-isotope stratigraphy of shallow-water limestones and implications for the timing of Late Cretaceous sea-level rise and anoxic events (Cenomanian–Turonian of the peri-Adriatic carbonate platform, Croatia). Eclogae Geologicae Helvetiae 92, 163–70.Google Scholar
Dera, G., Brigaud, B., Monna, F., Laffont, R., Pucéat, E., Deconinck, J. P., Pellenard, P., Joachimski, M. M. & Durlet, C. 2011. Climatic ups and downs in a disturbed Jurassic world. Geology 39, 215–18.Google Scholar
Dera, G., Pellenard, P., Neige, P., Deconinck, J. F., Pucéat, E. & Dommergues, J. L. 2009. Distribution of clay minerals in Early Jurassic Peritethyan seas: palaeoclimatic significance inferred from multiproxy comparisons. Palaeogeography, Palaeoclimatology, Palaeoecology 271, 3951.CrossRefGoogle Scholar
Dercourt, J., Ricou, L. E. & Vrielynck, B. 1993. Atlas Tethys Palaeoenvironmental Maps. Gauthier–Villars, 307 pp.Google Scholar
Di Lucia, M., Trecalli, A., Mutti, M. & Parente, M. 2012. Bio-chemostratigraphy of the Barremian-Aptian shallow-water carbonates of the southern Apennines (Italy): pinpointing the OAE1a in a Tethyan carbonate platform. Solid Earth 3, 128.Google Scholar
Dickson, J. A. D. 1985. Diagenesis of shallow-marine carbonates. In Sedimentology, Recent Developments and Applied Aspects (eds Brenchley, P. & Williams, B. P. J.), pp. 173188. Blackwell, Oxford.Google Scholar
Dickson, J. A. D. & Coleman, M. L. 1980. Changes in carbon and oxygen isotope composition during limestone diagenesis. Sedimentology 27, 107–18.CrossRefGoogle Scholar
Dragičević, I. & Velić, I. 2002. The northeastern margin of the Adriatic carbonate platform. Geologia Croatica 55/2, 185232.Google Scholar
Duarte, L. V. 1998. Clay minerals and geochemical evolution in the Toarcian-lower Aalenian of the Lusitanian Basin (Portugal). Cuadernos de Geología Ibérica 24, 6498.Google Scholar
Duarte, L. V., Oliveira, L. C. & Rodigues, R. 2007. Carbon isotopes as a sequence stratigraphic tool: examples from the Lower and Middle Toarcian marly limestones of Portugal. Boletin Geológico y Minero de España 118, 318.Google Scholar
Duarte, L. V. & Soares, A. F. 2002. Litostratigrafia das séries calcárias Jurássico Lusitânica. Comun. Instituto Geológico y Mineiro, Lisboa 89, 135–54.Google Scholar
Ebli, O., Vetö, I., Lobitzer, H., Sajgò, C., Demény, A. & Hetényi, M. 1998. Primary productivity and early diagenesis in the Toarcian Tethys on the example of the Mn rich black shales of the Sachrang Formation, Northern Calcareous Alps. Organic Geochemistry 29, 1635–47.CrossRefGoogle Scholar
Elmi, S. 2006. Pliensbachian/Toarcian boundary: the proposed GSSP of Peniche (Portugal). Volumina Jurassica IV, 516.Google Scholar
Ferreri, V., Weissert, H., D'Argenio, B. & Buonocunto, F. P. 1997. Carbon-isotope stratigraphy: a tool for basin to carbonate platform correlation. Terra Nova 9, 5761.Google Scholar
Gattuso, J. P. & Buddemeier, R. W. 2000. Ocean biogeochemistry; calcification and CO2 . Nature 407, 311–13.CrossRefGoogle ScholarPubMed
Gill, B. C., Lyons, T. W. & Jenkyns, H. C. 2011. A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event. Earth and Planetary Science Letters 312, 484–96.Google Scholar
Grandić, S., Boromisa-Balaš, E., Šušterčić, M. & Kolbah, S. 1999. Hydrocarbon possibilities in the eastern Adriatic slope zone of Croatian offshore area. Nafta, Zagreb 50/2, 5173.Google Scholar
Gröcke, D. R., Hori, R. S., Trabucho-Alexandre, J., Kemp, D. B. & Schwark, L. 2011. An open ocean record of the Toarcian oceanic anoxic event. Solid Earth 2, 245–57.Google Scholar
Grötsch, J., Billing, I. & Vahrenkamp, V. 1998. Carbon-isotope stratigraphy in shallow water carbonates: implications for Cretaceous black shale deposition. Sedimentology 45, 623–34.Google Scholar
Guex, J., Morard, A., Bartolini, A. & Morettini, E. 2001. Découverte d'une importante lacune stratigraphique à la limite Domérien-Toarcien: implications paléo-océanographiques. Bulletin de la Société Vaudoise des Sciences Naturelles 345, 277–84.Google Scholar
Hallam, A. 1981. A revised sea-level curve for the Early Jurassic. Journal of the Geological Society of London 138, 735–43.CrossRefGoogle Scholar
Hallock, P. & Schlager, W. 1986. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1, 389–98.Google Scholar
Heiser, U., Neumann, T., Scholten, J. & Stüben, D. 2001. Recycling of manganese from anoxic sediments in stagnant basins by seawater inflow: a study of surface sediments from the Gotland Basin, Baltic Sea. Marine Geology 177, 151–66.Google Scholar
Hermoso, M., Minoletti, F., Le Callonnec, L., Jenkyns, H. C., Hesselbo, S. P., Rickaby, R. E. M., Renard, M., de Rafelis, M. & Emmanuel, L. 2009. Global and local forcing of Early Toarcian seawater chemistry: a comparative study of different paleoceanographic settings (Paris and Lusitanian basins). Paleoceanography 24, PA4208 doi: 10.1029/2009PA001764.CrossRefGoogle Scholar
Hermoso, M., Minoletti, F., Rickaby, R. E. M., Hesselbo, S. P., Baudin, F. & Jenkyns, H. C. 2012. Dynamics of a stepped carbon-isotope excursion: Ultra high-resolution study of Early Toarcian environmental change. Earth and Planetary Science Letters 319–320, 4554.Google Scholar
Hesselbo, S. P., Gröcke, D. R., Jenkyns, H. C., Bjerrum, C. J., Farrimond, P., Morgans Bell, H. S. & Green, O. R. 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event.Nature 406, 392–5.Google Scholar
Hesselbo, S. P. & Jenkyns, H. C. 1998. British Lower Jurassic sequence stratigraphy. In Mesozoic–Cenozoic Sequence Stratigraphy of European Basins (eds de Graciansky, P.C., Hardenbol, J., Jacquin, T., Farley, M. & Vail, P. R.), pp. 561–81. Society of Economic Paleontologists and Mineralogists, Special Publication 60.Google Scholar
Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V. & Oliveira, L. C. V. 2007. Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth and Planetary Science Letters 253, 455–70.Google Scholar
Hesselbo, S. P. & Pienkowski, G. 2011. Stepwise atmospheric carbon-isotope excursion during the Toarcian Oceanic Anoxic Event (Early Jurassic, Polish Basin). Earth and Planetary Science Letters 301, 365–72.Google Scholar
Huckriede, H. & Meischner, D. 1996. Origin and environment of manganese-rich sediments within black-shale basins. Geochimica and Cosmochimica Acta 60, 1399–413.CrossRefGoogle Scholar
Hudson, J. D. 1977. Stable isotopes and limestone lithification. Journal of Geological Society of London 133, 637–60.Google Scholar
Hudson, J. D. & Anderson, T. F. 1989. Ocean temperatures and isotopic compositions through time. Transactions of the Royal Society of Edinburgh 80, 183–92.CrossRefGoogle Scholar
Iglesias-Rodriguez, M. D., Halloran, P. R., Rickaby, R. E. M., Hall, I. R., Colmenero-Hidalgo, E., Gittins, J. R., Green, D. R. H., Tyrrell, T., Gibbs, S. J., von Dassow, P., Rehm, E., Armbrust, E. V. & Boessenkool, K. P. 2008. Phytoplankton calcification in a high-CO2 world. Science 320, 336–40.Google Scholar
Immenhauser, A., della Porta, G., Kenter, J. A. M. & Bahamonde, J. R. 2003. An alternative model for positive shifts in shallow-marine carbonate δ13C and δ18O. Sedimentology 50, 953–9.CrossRefGoogle Scholar
Immenhauser, A., Hillgärtner, H. & Van Bentum, E. 2005. Microbial-foraminiferal episodes in the early Aptian of the southern Tethyan margin: ecological significance and possible relation to oceanic anoxic event 1a. Sedimentology 52, 7799.Google Scholar
Ivanović, A., Sakač, K., Marković, S., Sokač, B., Šušnjar, M., Nikler, L. & Šušnjara, A. 1973. Osnovna geološka karta SFRJ 1:100.000, List Obrovac L33–140 (Basic Geological Map of SFRY 1:100,000, Obrovac Sheet). Institut za Geološka Istraživanja, Zagreb (1962–1967). Savezni Geološki Institut, Beograd.Google Scholar
James, N. P. & Choquette, P. W. 1990. Limestones − the meteoric diagenetic environment. In Diagenesis (eds Macillreath, I. A. & Morrow, D. W.), pp. 3573. Geoscience Canada, Reprint Series 4.Google Scholar
Jelaska, V. 1973. Paleogeografska i naftnogeološka razmatranja zapadnog dijela karbonatnog šelfa Dinarida (Paleogeographical and petroleum—geological considerations of the western part of the Dinaric carbonate shelf). Geoloski Vjesnik 25, 5764.Google Scholar
Jenkyns, H. C. 1985. The Early Toarcian and Cenomanian–Turonian anoxic events in Europe: comparisons and contrasts. Geologische Rundschau 74, 505–18.Google Scholar
Jenkyns, H. C. 1988. The Early Toarcian (Jurassic) anoxic event: stratigraphic, sedimentary, and geochemical evidence. American Journal of Science 288, 101–51.Google Scholar
Jenkyns, H. C. 1995. Carbon-isotope stratigraphy and paleoceanographic significance of the Lower Cretaceous shallow-water carbonates of Resolution Guyot, Mid-Pacific Mountains. In Proceedings of the Ocean Drilling Program, Scientific Results (eds Winterer, E. L., Sager, W. W., Firth, J. V. & Sinton, J. M.), pp. 99104. College Station, Texas, 143.Google Scholar
Jenkyns, H. C. 2003. Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world. Philosophical Transactions of the Royal Society of London 361 A, 1885–916.CrossRefGoogle ScholarPubMed
Jenkyns, H. C. 2010. The geochemistry of oceanic anoxic events. Geochemistry Geophysics Geosystems 11, Q03004, doi: 10.1029/2009GC002788.Google Scholar
Jenkyns, H. C. & Clayton, C. J. 1986. Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic. Sedimentology 33, 87106.Google Scholar
Jenkyns, H. C. & Clayton, C. J. 1997. Lower Jurassic epicontinental carbonates and mudstones from England and Wales: chemostratigraphic signals and the early Toarcian anoxic event. Sedimentology 44, 687706.Google Scholar
Jenkyns, H. C., Géczy, B. & Marshall, J. D. 1991. Jurassic manganese carbonates of central Europe and the Early Toarcian anoxic event. Journal of Geology 99, 137–49.Google Scholar
Jenkyns, H. C., Gröcke, D. R. & Hesselbo, S. P. 2001. Nitrogen isotope evidence for water mass denitrification during the early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography 16, 593603.Google Scholar
Jenkyns, H. C., Jones, C. E., Gröcke, D. R., Hesselbo, S. P. & Parkinson, D. N. 2002. Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography. Journal of the Geological Society of London 159, 351–78.Google Scholar
Jenkyns, H. C. & Wilson, P. A. 1999. Stratigraphy, paleoceanography, and evolution of Cretaceous Pacific guyots: relics from a greenhouse Earth. American Journal of Science 299, 341–92.Google Scholar
Jones, C. E. & Jenkyns, H. C. 2001. Seawater strontium isotopes, oceanic anoxic events and sea-floor hydrothermal activity in the Jurassic and Cretaceous. American Journal of Science 301, 112–49.Google Scholar
Kafousia, N., Karakitsios, V., Jenkyns, H. C. & Mattioli, E. 2011. A global event with a regional character: the Early Toarcian Oceanic Anoxic Event in the Pindos Ocean (northern Peloponnese, Greece). Geological Magazine 148, 619–31.Google Scholar
Kemp, D. B., Coe, A. L., Cohen, A. S. & Schwark, L. 2005. Astronomical pacing of methane release in the early Jurassic period. Nature 437, 396–99.CrossRefGoogle ScholarPubMed
Kemp, D. B., Coe, A. L., Cohen, A. S. & Weedon, G. P. 2011. Astronomical forcing and chronology of the early Toarcian (Early Jurassic) oceanic anoxic event in Yorkshire, UK. Paleoceanography 26, PA4210, doi: 10.1029/2011PA002122.Google Scholar
Kleypas, J. A., Buddemeier, R. W., Archer, D., Gattuso, J. P., Langdon, C. & Opdyke, B. N. 1999. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284, 118–19.Google Scholar
Küspert, W. 1982. Environmental change during oil shale deposition as deduced from stable isotope ratios. In Cyclic and Event Stratification (eds Einsele, G. & Seilacher, A.), pp. 482501. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Littler, K., Hesselbo, S. P. & Jenkyns, H. C. 2009. A carbon-isotope perturbation at the Pliensbachian–Toarcian boundary: evidence from the Lias Group, NE England. Geological Magazine 147, 181–92.CrossRefGoogle Scholar
Lu, Z., Jenkyns, H. C. & Rickaby, R. E. M. 2010. Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events. Geology 38, 1107–10.Google Scholar
Mailliot, S., Mattioli, E., Bartolini, A., Baudin, F., Pittet, B. & Guex, J. 2009. Late Pliensbachian–Early Toarcian (Early Jurassic) environmental changes in an epicontinental basin of NW Europe (Causses area, central France): a micropaleontological and geochemical approach. Palaeogeography, Palaeoclimatology, Palaeoecology 273, 346–64.Google Scholar
Mailliot, S., Mattioli, E., Guex, J. & Pittet, B. 2006. The Early Toarcian anoxia, a synchronous event in the Western Tethys? An approach by quantitative biochronology (Unitary Associations), applied on calcareous nannofossils. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 562–86.Google Scholar
Marshall, J. D. 1992. Climatic and oceanographic signals from the carbonate rock record and their preservation. Geological Magazine 129, 143–60.CrossRefGoogle Scholar
Martinuš, M., Bucković, D. & Kukoč, D. 2012. Discontinuity surfaces recorded in shallow-marine platform carbonates: an example from the Early Jurassic of the Velebit Mt. (Croatia). Facies 58, 649–69.Google Scholar
Mattioli, E., Pittet, B., Bucefalo Palliani, R., Röhl, H. J., Schmif-Röhl, A. & Morettini, E. 2004. Phytoplankton evidence for the timing and correlation of palaeoceanographical changes during the early Toarcian oceanic anoxic event (Early Jurassic). Journal of the Geological Society of London 161, 685–93.Google Scholar
McElwain, J. C., Murphy, J. W. & Hesselbo, S. P. 2005. Changes in carbon dioxide during an oceanic anoxic event linked to intrusion of Gondwana coals. Nature 435, 479–83.Google Scholar
Miller, K. G., Wright, J. D. & Browning, J. V. 2005. Visions of ice sheets in a greenhouse world. Marine Geology 217, 215–31.Google Scholar
Morard, A., Guex, J., Bartolini, E. & De Wever, P. 2003. A new scenario for the Domerian-Toarcian transition. Bulletin de la Société Géologique de France 174, 351–6.Google Scholar
Nikler, L. & Sokač, B. 1968. Biostratigraphy of the Jurassic of Velebit (Croatia). Geoloski Vjesnik 21, 161–76.Google Scholar
Pálfy, J. & Smith, P. L. 2000. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo–Ferrar flood basalt volcanism. Geology 28, 747–50.Google Scholar
Parente, M., Frijia, G. & di Lucia, M. 2007. Carbon-isotope stratigraphy of Cenomanian–Turonian platform carbonates from the Southern Apennines (Italy): a chemostratigraphic approach to the problem of correlation between shallow-water and deep-water successions. Journal of the Geological Society of London 164, 353–64.Google Scholar
Röhl, H. J., Schmid-Röhl, A., Oschmann, W., Frimmel, A. & Schwark, L. 2001. The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 165, 2752.Google Scholar
Rosales, I., Quesada, S. & Robles, S. 2006. Geochemical arguments for identifying second-order sea-level changes in hemipelagic carbonate ramp deposits. Terra Nova 18, 233–40.Google Scholar
Sabatino, N., Neri, R., Bellanca, A., Jenkyns, H. C., Baudin, F., Parisi, G. & Masetti, D. 2009. Carbon-isotope records of the Early Jurassic (Toarcian) Oceanic Anoxic Event from the Valdorbia (Umbria–Marche Apennines) and Monte Mangart (Julian Alps) sections: palaeoceanographic and stratigraphic implications. Sedimentology 56, 1307–28.Google Scholar
Sabatino, N., Neri, R., Bellanca, A., Jenkyns, H. C., Masetti, D. & Scopelliti, G. 2011. Petrography and high-resolution geochemical records of Lower Jurassic manganese-rich deposits from Monte Mangart, Julian Alps. Palaeogeography, Palaeoclimatology, Palaeoecology 299, 97109.Google Scholar
Savić, D. & Dozet, S. 1984. Osnovna geološka karta SFRJ 1:100.000, List Delnice L33–90 (Basic Geological Map of SFRY 1:100,000, Delnice Sheet). Geološki zavod; OOUR za Geologiju i Paleontologiju, Zagreb, Geološki zavod, Ljubljana (1970–1983). Savezni Geološki Institut, Beograd.Google Scholar
Scholle, P. A. & Arthur, M. A. 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. American Association of Petroleum Geologists Bulletin 64, 6787.Google Scholar
Sokač, B., Nikler, L., Velić, I. & Mamužić, P. 1974. Osnovna geološka karta SFRJ 1:100.000, List Gospić L33–127 (Basic Geological Map of SFRY 1:100,000, Gospić Sheet). Institut za Geološka Istraživanja, Zagreb (1963–1967). Savezni Geološki Institut, Beograd.Google Scholar
Suan, G., Mattioli, E., Pittet, B., Lécuyer, C., Suchéras-Marx, B., Duarte, L. V., Philippe, M., Reggiani, L. & Martineau, F. 2010. Secular environmental precursors to Early Toarcian (Jurassic) extreme climate changes. Earth and Planetary Science Letters 290, 448–58.Google Scholar
Suan, G., Nikitenko, B. L., Rogov, M. A., Baudin, F., Spangenberg, J. E., Knyazev, V. G., Glinskikh, L. A., Gorycheva, A. A., Adatte, T., Riding, J. B., Fôllmi, K. B., Pittet, B., Mattioli, E. & Lécuyer, C. 2011. Polar record of Early Jurassic carbon injection. Earth and Planetary Science Letters 312, 102–13.Google Scholar
Svensen, H., Planke, S., Chevalier, L., Malthe-Sørensen, A., Corfu, F. & Jamveit, B. 2007. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth and Planetary Science Letters 256, 554–66.Google Scholar
Swart, P. K. & Eberli, G. 2005. The nature of the δ13C of periplatform sediments: implications for stratigraphy and the global carbon cycle. Sedimentary Geology 175, 115–29.Google Scholar
Tišljar, J., Vlahović, I., Sremac, J., Velić, I., Veseli, V. & Stanković, D. 1991. Excursion “A” – Velebit Mt., Permian–Jurassic. In Some Aspects of the Shallow Water Sedimentation on the Adriatic Carbonate Platform (Permian to Eocene) (eds Vlahović, I. & Velić, I.), pp. 149. The Second International Symposium on the Adriatic Carbonate Platform, Excursion Guide-Book, Zagreb.Google Scholar
Tišljar, J., Vlahović, I., Velić, I. & Sokač, B. 2002. Carbonate platform megafacies of the Jurassic and Cretaceous deposits of the Karst Dinarides. Geologica Croatica 55, 139–70.Google Scholar
Trecalli, A., Spangenberg, J., Adatte, T., Föllmi, K. B. & Parente, M. 2012. Carbonate platform evidence of ocean acidification at the onset of the early Toarcian oceanic anoxic event. Earth and Planetary Science Letters 357–8, 214–25.Google Scholar
Vahrenkamp, V. 1996. Carbon isotope stratigraphy of the Kharaib and Shuaiba FM: implications for the Early Cretaceous Evolution of the Arabian Gulf. American Association of Petroleum Geologists Bulletin 80, 647–62.Google Scholar
Vahrenkamp, V. 2010. Chemostratigraphy of the Lower Cretaceous Shu'aiba Formation: a δ13C reference profile for the Aptian Stage from the southern Neo-Tethys Ocean. In: Barremiam-Aptian Stratigraphy and Hydrocarbon Habitat of the Eastern Arabian Plate (eds van Buchem, S. P., Al-Husseini, M. I., Maurerand, F. & Droste, H. J.), pp. 107−37. GeoArabia, Special Publication no. 4.Google Scholar
van de Schootbrugge, B., McArthur, J. M., Bailey, T. R., Rosenthal, Y., Wright, J. D. & Miller, K. G. 2005. Toarcian oceanic anoxic event: an assessment of global causes using belemnite C isotope records. Paleoceanography 20, PA3008, doi: 10.1029/2004PA001102.Google Scholar
Veizer, J. 1983. Chemical diagenesis of carbonates: theory and application of trace element technique. In Stable Isotopes in Sedimentary Geology (eds Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J. & Land, L.), 3.13.100. SEPM Short Course 10.Google Scholar
Velić, I. 1977. Jurassic and Lower Cretaceous assemblage zones in Mt. Velika Kapela, Central Croatia. Acta Geologica 9 (2), 1537.Google Scholar
Velić, I. 2007. Stratigraphy and palaeobiogeography of Mesozoic benthic foraminifera of the Karst Dinarides (SE Europe). Geologica Croatica 60, 1113.Google Scholar
Velić, I., Vlahović, I. & Matičec, D. 2002. Depositional sequences and palaeogeography of the Adriatic Carbonate Platform. Memorie della Società Geoligica Italiana 57, 141–51.Google Scholar
Vetö, I., Demény, A., Hertelendi, E. & Hetényi, M. 1997. Estimation of primary productivity in the Toarcian Tethys. A novel approach based on TOC, reduced sulphur and manganese contents. Palaeogeography, Palaeoclimatology, Palaeoecology 132, 355–71.Google Scholar
Vlahović, I., Tišljar, J., Velić, I. & Matičec, D. 2005. Evolution of the Adriatic Carbonate Platform: palaeogeography, main events and depositional dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology 220, 333–60.Google Scholar
Weissert, H. & Erba, E. 2004. Volcanism, CO2 and palaeoclimate: a Late Jurassic–Early Cretaceous carbon and oxygen isotope record. Journal of the Geological Society of London 161, 695702.Google Scholar
Wissler, L., Funk, H. & Weissert, H. 2003. Response of Early Cretaceous carbonate platforms to changes in atmospheric carbon dioxide levels. Palaeogeography, Palaeoclimatology, Palaeoecology 200, 187205.Google Scholar
Woodfine, R. G., Jenkyns, H. C., Sarti, M., Baroncini, F. & Violante, C. 2008. The response of two Tethyan carbonate platforms to the early Toarcian oceanic anoxic event: environmental change and differential subsidence. Sedimentology 55, 1011–28.Google Scholar
Yang, W. 2001. Estimation of duration of subaerial exposure in shallow-marine limestone − an isotopic approach. Journal of Sedimentary Research 71, 778–89.Google Scholar
Zachos, J. C., Dickens, G. R. & Zeebe, R. E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–83.Google Scholar
Zakharov, V. A., Shurygin, B. N., Ilyina, V. I. & Nikitenko, B. L. 2006. Pliensbachian–Toarcian biotic turnover in North Siberia and the Arctic region. Stratigraphy and Geological Correlation 14, 399417.CrossRefGoogle Scholar
Zappaterra, E. 1990. Carbonate paleogeographic sequences of the Periadriatic region. Bollettino della Società Geologica Italiana 109, 520.Google Scholar
Zappaterra, E. 1994. Source rock distribution model of the Periadriatic region. American Association of Petroleum Geologists Bulletin 78, 333–54.Google Scholar