Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T17:18:12.917Z Has data issue: false hasContentIssue false

Carboniferous ostracods from central Honshu, Japan

Published online by Cambridge University Press:  25 October 2016

C. P. STOCKER*
Affiliation:
Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH, UK
T. KOMATSU
Affiliation:
Faculty of Advanced Science and Technology, Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Kumamoto 860–8555, Japan
G. TANAKA
Affiliation:
Center for Marine Environment Studies, Kumamoto University, Kamiamakusa City, Kumamoto 861–6102, Japan
M. WILLIAMS
Affiliation:
Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH, UK
D. J. SIVETER
Affiliation:
Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH, UK
C. E. BENNETT
Affiliation:
Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH, UK
S. WALLIS
Affiliation:
Department of Earth and Planetary Sciences, Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464–8601, Japan
T. OJI
Affiliation:
Nagoya University Museum, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464–8601, Japan
T. MAEKAWA
Affiliation:
Faculty of Advanced Science and Technology, Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Kumamoto 860–8555, Japan
M. OKURA
Affiliation:
Naka 86, Minamiyama-cho, Konan, Aichi 483–8155, Japan
T. R. A. VANDENBROUCKE
Affiliation:
Department of Geology (WE13), Ghent University, 9000 Ghent, Belgium
*
Author for correspondence: [email protected]

Abstract

Silicified beyrichiocopid and podocopid ostracods from limestone nodules derived from the middle part of the Ichinotani Formation within the Hida Gaien Terrane of central Honshu Island, Japan, are associated with fusulinid foraminifera that indicate strata of the middle Moscovian (Pennsylvanian, Carboniferous). This is a rare record of ostracods from the Palaeozoic of Japan and the first systematic description of ostracods from the Carboniferous of the Hida Gaien Terrane. The fauna comprises six ostracod species (two new) assigned to the genera Amphissites, Kirkbya, Bairdia, Aechmina and Healdia, and additional material of possible cavellinids. The numerical dominance of ornamented beyrichiocopids such as Kirkbya and Amphissites, along with smaller numbers of smooth podocopids such as Bairdia, indicates an ‘Eifelian mega-assemblage’ ecotype (sensu G. Becker), that is typical of mid Palaeozoic shallow marine, high-energy environments in a fore-reef ecosystem.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi, S. 1989. Ostracodes from the Ichinotani Formation (Carboniferous and Permian), Fukuji, Hida Massif, Central Japan. XIe Congres International de Stratigraphie et de Géologie du Carbonifère, Beijing. Compte Rendu 3, 15.Google Scholar
Bassler, R. S. 1932. The Stratigraphy of the Central Basin of Tennessee. Tennessee: Brandon – Nashville, 236 pp.Google Scholar
Becker, G. 1971. Paleoecology of Middle Devonian ostracods from the Eifel region, Germany. Paléoécologie des Ostracodes. Bulletin du Centre de Recherches Pau-SNPA 5, 801–16.Google Scholar
Becker, G. & Wang, S.-Q. 1992. Kirkbyacea and Bairdiacea (Ostracoda) from the Palaeozoic of China. Palaeontographica Abteilung A 224, 154.Google Scholar
Bless, M. J. M. 1983. Late Devonian and Carboniferous ostracode assemblages and their relationship to the depositional environment. Bulletin de la Société belge de Géologie 92, 3153.Google Scholar
Bless, M. J. M., Streel, M. & Becker, G. 1988. Distribution and palaeoenvironment of Devonian to Permian ostracod assemblages in Belgium with reference to some Late Famennian to Permian marine nearshore to “brackish-water” assemblages dated by miospores. Annales de la Société Géologique de Belgique 110, 347–62.Google Scholar
Boomer, I., Horne, D. J. & Slipper, I. J. 2003. The use of ostracods in palaeoenvironmental studies, or what can you do with an ostracod shell. Paleontological Society Papers 9, 153–79.Google Scholar
Bouček, B. 1936. Die Ostracoden des böhmischen Ludlows (Stufe eβ). Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Abteilung B 76, 3198.Google Scholar
Coen, M. 1989. Ostracodes of the Devonian–Carboniferous transition beds of South China. Bulletin de la Societé belge de Géologie 98, 311–7.Google Scholar
Cohen, A. C. & Morin, J. G. 1990. Patterns of reproduction in ostracodes – a review. Journal of Crustacean Biology 10, 184211.Google Scholar
Crasquin-Soleau, S. 1997. First Upper Paleozoic ostracodes from British Columbia (Canada): Harper Ranch Group. Palaeontographica Abteilung A, 244, 3784.Google Scholar
Fujimoto, H. & Igo, H. 1958. Stratigraphic position of the corals in the Ichinotani formation (Carboniferous), Fukuji district, Hida massif, central Japan. Proceedings of the Japan Academy 34, 159–63.CrossRefGoogle Scholar
Galitzkaja, A. Y. 1977. Ranne- i Srednekamennougolynye Produktidy Severnoy. Frunze: Kyrgyzstan Academy of sciences, Institute of Geology, 297 pp. (in Russian).Google Scholar
Girty, G. H. 1910. New genera and species of Carboniferous fossils from the Fayetteville shale of Arkansas (part 2). New York Academy of Science Annals 20, 189238.Google Scholar
Gladchenko, A. 1955. Polevoy Atlas Rukovodyaschikh Brakhiopod Nizhnego Karbona. Frunze: Kyrgyzstan Academy of sciences, Institute of Geology, 30 pp. (in Russian).Google Scholar
Goto, M. & Okura, M. 2004. The chondrichthyan tooth remains from the Carboniferous and Permian of Fukuji, Gifu Prefecture, central Japan. Earth Science (Chikyu Kagaku) 58, 215–28 (in Japanese with English abstract).Google Scholar
Harayama, S. 1990. Geology of the Kamikōchi District, with Geological Sheet Map at 1:50000. Tsukuba: Geological Survey of Japan, 175 pp. (in Japanese with English abstract).Google Scholar
Harlton, B. H. 1933. Micropaleontology of the Pennsylvanian Johns Valley Shale of the Ouachita Mountains, Oklahoma, and its relationship to the Mississippian Caney Shale. Journal of Paleontology 7, 329.Google Scholar
Henningsmoen, G. 1953. Classification of Paleozoic straight-hinged ostracods. Norsk geologisk Tidsskrift 31, 185288.Google Scholar
Horne, D. J., Cohen, A. & Martens, K. 2002. Taxonomy, morphology and biology of Quaternary and living Ostracoda. In The Ostracoda: Applications in Quaternary Research (eds Holmes, J. A. & Chivas, A.), pp. 536. Geophysical Monograph no. 131.Google Scholar
Ibaraki, Y., Tazawa, J.-I. & Miyake, Y. 2009. Gigantoproductus (Carboniferous Brachiopoda) from the lowest part of the Ichinotani Formation, Fukuji, Hida Gaien Belt, central Japan. Science Reports of Niigata University (Geology) 24, 15.Google Scholar
Igo, H. 1956. On the Carboniferous and Permian of the Fukuji district, Hida Massif, with special reference to the fusulinid zones of the Ichinotani Group. Journal of the Geological Society of Japan 62, 217–40 (in Japanese with English abstract).Google Scholar
Igo, H. 1960. First discovery of non-marine sediments in the Japanese Carboniferous. Proceedings of the Japan Academy 36, 498502.Google Scholar
Isaji, S. & Okura, M. 2014. Molluscan larvae from the Carboniferous Ichinotani Formation, Fukuji, Gifu Prefecture, Central Japan. Paleontological Research 18, 4550.Google Scholar
Ishizaki, K. 1963. On some Carboniferous ostracodes of the genus Bairdia from Japan. Japanese Journal of Geology and Geography 34, 161–75.Google Scholar
Ishizaki, K. 1964. On some Carboniferous ostracod genera from Japan. Saito Ho-on Kai Museum Research Bulletin 33, 3040.Google Scholar
Ishizaki, K. 1968. On some Carboniferous ostracodes from the Takezawa Formation, northeast Japan. Saito Ho-on Kai Museum Research Bulletin 37, 11–6.Google Scholar
Isozaki, Y., Aoki, K., Nakama, T. & Yanai, S. 2010. New insight into a subduction-related orogen: a reappraisal of the geotectonic framework and evolution of the Japanese Islands. Gondwana Research 18, 82105.CrossRefGoogle Scholar
Jones, T. R. 1850. Class Crustacea. In A Monograph of the Permian Fossils of England (King, W.), pp. 5866. London: The Palaeontographical Society.Google Scholar
Jones, T. R. 1859. [With notes on the species, in] On Permian Entomostraca from the shell-limestone of Durham. Transactions of the Tyneside Naturalists’ Field Club 4, 133–7.Google Scholar
Jones, T. R. 1887. Notes on the Palaeozoic bivalved Entomostraca, no XXIV. On some Silurian genera and species (continued). Annals and Magazine of Natural History, London, 5th Series 19, 400–16.Google Scholar
Jones, T. R. & Holl, H. B. 1869. Notes on the Palaeozoic bivalved Entomostraca, no. IX. Some Silurian species. Annals and Magazine of Natural History, London, 4th Series 3, 211–27.Google Scholar
Knight, J. B. 1928. Some Pennsylvanian ostracodes from the Henrietta Formation of eastern Missouri. Part I. Journal of Paleontology, Bridgewater Massachusetts 2, 229–67.Google Scholar
Kobayashi, T. & Hamada, T. 1979. Outline of the Carboniferous trilobites in Japan. Proceedings of the Japan Academy. Series B: Physical and Biological Sciences 55, 104–8.Google Scholar
Kobayashi, T. & Hamada, T. 1987. A new Carboniferous trilobite from the Hida Plateau, West Japan. Proceedings of the Japan Academy. Series B: Physical and Biological Sciences 63, 115–8.Google Scholar
Kojima, S., Takeuchi, M. & Tsukada, K. 2005. On the English expression of the Hida Gaien belt. The Journal of the Geological Society of Japan 111, 54–5 (in Japanese with English abstract).CrossRefGoogle Scholar
Kummerow, E. E. 1939. Die Ostrakoden und Phyllopoden des Deutschen Unterkarbons. Berlin: Preußischen Geologischen Landesanstalt, 18 pp.Google Scholar
Kurihara, T. 2004. Silurian and Devonian radiolarian biostratigraphy of the Hida Gaien belt, central Japan. The Journal of the Geological Society of Japan 110, 620–39.Google Scholar
Latreille, P. A. 1802. Histoire Naturelle, Générale et Particuliére, des Crustacés et des Insectes, 3rd ed. Paris: Dufart, 468 pp.Google Scholar
Lethiers, F. 1981. Ostracodes du Dévonien terminal de l'Ouest du Canada: systématique, biostratigraphie et paléoécologie. Geobios, Mémoire Spécial 5, 1236.Google Scholar
Liu, X.-G. & Zhou, J.-H. 1990. Late Carboniferous ostracodes from Taiyuan Formation at Qiligou, West Hill of Taiyuan City. Earth Science-Journal of China University of Geosciences 15, 307–15 (in Chinese with English abstract).Google Scholar
McCoy, F. 1844. A Synopsis of the Characters of the Carboniferous Limestone Fossils of Ireland. Dublin: University Press, 207 pp.CrossRefGoogle Scholar
Morey, P. S. 1936. Ostracoda from the Chouteau formation of Missouri. Journal of Paleontology 10, 114–22.Google Scholar
Müller, G. W. 1894. Die Ostracoden des Golfes von Neapel und der angrenzenden Meeresabschnitte. Fauna und Flora des Golfes von Neapel und der angrenzenden Meeresabschnitte. Zoologische Station zu Neapel 21, 1404.Google Scholar
Niikawa, I. 1978. Carboniferous and Permian fusulinids from Fukuji, central Japan. Journal of the Faculty of Science, Hokkaido University. Series 4, Geology and Mineralogy 18, 533610.Google Scholar
Niikawa, I. 1980. Geology and biostratigraphy of the Fukuji district, Gifu Prefecture, central Japan. Journal of the Geological Society of Japan 86, 2536 (in Japanese with English abstract).Google Scholar
Niko, S. 1990. Early Carboniferous (Viséan) cephalopods from the Hikoroichi Formation, southern Kitakami Mountains. Transactions and Proceedings of the Palaeontological Society of Japan, New Series 159, 554–61.Google Scholar
Niko, S. 2000. New cephalopod material from the Bashkirian (Middle Carboniferous) of the Ichinotani Formation, Central Japan. Paleontological Research 4, 255–60.Google Scholar
Niko, S. & Hamada, T. 1987. Adnatoceras from middle Carboniferous of the Ichinotani Formation, Fukuji district, central Japan. Transactions and Proceedings of the Palaeontological Society of Japan. New Series 148, 223–7.Google Scholar
Olempska, E. 1999. Silicified shallow-water ostracodes from the Early Carboniferous of South China. Acta Palaeontologica Polonica 44, 383436.Google Scholar
Onuki, Y. 1956. Explanatory Text to the Geological Map of the Iwate Prefecture II. Iwate Prefecture Government, 1189 (in Japanese).Google Scholar
Perrier, V. & Siveter, D. J. 2013. Testing Silurian palaeogeography using ‘European’ ostracod faunas. In Early Palaeozoic Biogeography and Palaeogeography (eds Harper, D. A. T. & Servais, T.), pp. 355–64. Geological Society of London, Memoirs no. 38.Google Scholar
Pokorný, V. 1954. A contribution to the taxonomy of the Paleozoic ostracods. Sbornik ústrědniho ústavu geologickeho (oddíl paleontologický;) 20 (for 1953), 213–32.Google Scholar
Pozner, V. M. 1951. Ostracoda of the Lower Carboniferous of the western flank of the Moscow Basin. All Union Petroleum Science-Research Geology Exploration Institute (VNIGRI) Transactions, Natural Sciences 56, 1108 (in Russian).Google Scholar
Roundy, P. V. 1926. Mississippian formations of San Saba County, Texas. Pt. 2, the microfauna. US Geological Survey Professional Paper 146, 58.Google Scholar
Saito, Y. & Hashimoto, M. 1982. South Kitakami Region: an allochthonous terrane in Japan. Journal of Geophysical Research: Solid Earth 87, 3691–96.Google Scholar
Sars, G. O. 1866. Oversight af Norges marine ostracoder. Forhandlinger I Videnskabs-Selskabet I Christiania 1865, 130.Google Scholar
Sars, G. O. 1888. Nye Bidrag til Kundskaben om Middlehavets Invertebratfauna. 4. Ostracoda Mediterranea. Archiv Mathematische Naturvetenskap 12, 173324.Google Scholar
Schallreuter, R. E. L. 1972. Drepanellacea (Ostracoda, Beyrichicopida) from Middle Ordovician Backsteinkalk Boulders IV. Laterophores hystrix sp.n., Pedomphalella germanica sp.n. and Easchmidtella fragosa (Neckaja). Berichte der Deutschen Gesellschaft für Geologische Wissenschaften A 17, 139–45, 2 pls.Google Scholar
Schallreuter, R. E. L. & Hinz-Schallreuter, I. 2007. Sexual dimorphism in two Ordovician ostracods from the Baltoscandian region and their phylogenetic significance. Geologiska Föreningen i Stockholm Förhandlingar 129, 239–44.Google Scholar
Schallreuter, R. E. L. & Siveter, D. J. 1985. Ostracodes across the Iapetus ocean. Palaeontology 28, 577–98.Google Scholar
Sergunkova, O. 1935. Brachiopods from the Lower Visean beds of the Talassic Alatau range (Tian-Shan). Tashkent: Publishing Committee of Sciences of the Uzbek SSR, 31 pp. (in Russian).Google Scholar
Shi, C.-G. 1982. Some Early Carboniferous ostracodes from Nylam, Xizang (Tibet). Acta PalaeontoIogica Sinica 21, 309–14 (in Chinese with English abstract).Google Scholar
Shi, G.-R. 2006. The marine Permian of East and Northeast Asia: an overview of biostratigraphy, palaeobiogeography and palaeogeographical implications. Journal of Asian Earth Sciences 26, 175206.Google Scholar
Siveter, D. J. 1984. Habitats and modes of life of Silurian ostracodes. In The Autecology of Silurian organisms (ed. Bassett, M. G.), pp. 7185. Special Papers in Palaeontology no. 32.Google Scholar
Siveter, D. J., Siveter, D. J., Sutton, M. D. & Briggs, D. E. G. 2007. Brood care in a Silurian ostracod. Proceedings of the Royal Society of London B: Biological Sciences, 274, 465–9.Google Scholar
Siveter, D. J., Tanaka, G., Farrell, U. C., Martin, M. J., Siveter, D. J. & Briggs, D. E. G. 2014. Exceptionally preserved 450 million-year-old Ordovician ostracods with brood care. Current Biology 24, 801–6.Google Scholar
Smith, J. 1911. Carboniferous limestone rocks of the Isle of Man with list of fossils appended. Transactions of the Geological Society of Glasgow 14, 119–64.Google Scholar
Sohn, I. G. 1961. Revision of some Paleozoic ostracod genera, part B: Aechminella, Amphissites, Kirkbyella, and related genera. U.S.G.S. Professional Paper 330B, 107–71.Google Scholar
Struve, W. 1961. Das Eifeler Korallen-Meer. Der Aufschluss Sonderheft 10, 81107.Google Scholar
Struve, W. 1963 a. Das Korallen-Meer der Eifel vor 300 Millionen Jahren—Funde, Deutungen, Probleme. Natur und Museum 93, 237–76.Google Scholar
Struve, W. 1963 b. Das Korallen-Meer des Eifeler Mitteldevons und seine Bewohner. Eifeljahrbuch 1964, 1230.Google Scholar
Sylvester-Bradley, P. C. 1961. Suborder Metacopina Sylvester-Bradley, n. suborder. In Treatise on Invertebrate Paleontology. Part Q, Arthropoda 3, Crustacea, Ostracoda (ed. Moore, R. C.), pp. Q358–59. Boulder, CO: Geological Society of America and Lawrence, KS: University of Kansas Press, 442 pp.Google Scholar
Tazawa, J.-I. 2002. Late Paleozoic brachiopod faunas of the South Kitakami Belt, northeast Japan, and their paleobiogeographic and tectonic implications. Island Arc 11, 287301.Google Scholar
Tazawa, J.-I. 2010. Late Carboniferous (Moscovian) choristitid brachiopods from Nagaiwa in the South Kitakami Belt, NE Japan. Scientific Reports, Niigata University (Geology) 25, 116.Google Scholar
Tazawa, J.-I., Miyake, Y. & Niikawa, I. 2010. Purdonella (Spiriferida, Brachiopod) from the Carboniferous Ichinotani Formation, Fukuji, Hida Gaien Belt, central Japan, and its palaeobiogeographical significance. Journal of the Geological Society of Japan 116, 127–33 (in Japanese with English abstract).Google Scholar
Tsukada, K. 2005. Tabulate corals from the Devonian Fukuji Formation, Hida Gaien belt, central Japan-Part 1. Bulletin of Nagoya University Museum 21, 57125.Google Scholar
Ulrich, E. & Bassler, R. 1906. New American Paleozoic Ostracoda. Notes and descriptions of Upper Carboniferous genera and species. United States National Museum, Proceedings 30, 149–64.Google Scholar
Upson, M. E. 1933. The Ostracoda of the Big Blue Series in Nebraska. Nebraska Geological Survey, Bulletin 8, 55 pp.Google Scholar
Vannier, J. M. C., Siveter, D. J. & Schallreuter, R. E. L. 1989. The composition and palaeogeographical significance of the Ordovician ostracode faunas of Southern Britain, Baltoscandia and Ibero-Amorica. Palaeontology 32, 163222.Google Scholar
Wang, S.-Q. 1988. Ostracodes. In Devonian–Carboniferous Boundary in Nanbiancun, Guilin, China–Aspects and Records (ed. Yu, C.), pp. 209364. Beijing, China: Science Press.Google Scholar
Whatley, R. 1983. The application of Ostracoda to palaeoenvironmental analysis. In Applications of Ostracoda (ed. Maddocks, R. F.), pp. 5177. Houston: University of Houston Geosciences.Google Scholar
Whatley, R. 1988. Population structure of ostracods: some general principles for the recognition of palaeoenvironments. In Ostracoda in the Earth Sciences (eds De Decker, P., Colin, J. P. & Peypouquet, J. P.), pp. 245–56. Amsterdam: Elsevier.Google Scholar
Williams, M., Floyd, J. D., Salas, M., Siveter, D. J., Stone, P. & Vannier, J. 2003. Patterns of ostracod migration for the ‘North Atlantic’ region during the Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology 195, 193228.Google Scholar
Williams, M., Stone, P., Siveter, D. J. & Taylor, P. 2001. Upper Ordovician ostracods from the Cautley district, northern England: Baltic and Laurentian affinities. Geological Magazine 138, 589607.Google Scholar
Yuan, F.-T. & Hao, Y.-C. 1988. Middle Carboniferous Ostracoda from the Western border area of the Ordos Basin, Northern China. Acta Micropalaeontologica Sinica 5, 7784 (in Chinese with English abstract).Google Scholar