Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T02:28:33.807Z Has data issue: false hasContentIssue false

A carbon isotope reference scale for the Lower Cambrian succession in Siberia: report of IGCP Project 303

Published online by Cambridge University Press:  01 May 2009

M. D. Brasier
Affiliation:
Department of Earth Sciences, Parks Road, Oxford 0X1 3PR, UK
A. Yu. Rozanov
Affiliation:
Palaeontological Institute, 123 Profsoyuznaya, Moscow 117647, Russia
A. Yu. Zhuravlev
Affiliation:
Palaeontological Institute, 123 Profsoyuznaya, Moscow 117647, Russia
R. M. Corfield
Affiliation:
Department of Earth Sciences, Parks Road, Oxford 0X1 3PR, UK
L. A. Derry
Affiliation:
CNRS, Centre de Recherches Petrographiques et Geochemiques, 54501, Vandoevre-les-Nancy, France

Abstract

Four sections from the mid-Atdabanian to lowest Toyonian (middle Cambrian) along the Lena River of Siberia were sampled for carbon isotope stratigraphy. These show a mainly heavy but highly oscillatory δ13C signature for the Atdabanian to mid-Botomian interval, coincident with the major phase of invertebrate innovation. A prolonged interval of negative δ13C followed until late Toyonian times, coincident with Botomian-Toyonian mass extinctions. Eleven carbon isotope cycles are identified through the lower Cambrian, which should now be tested for their utility in global correlation and relationship to bioevents in the Cambrian explosion.

Type
Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharon, P., Schidlowski, M., & Singh, I. B., 1987. Chronostratigraphic markers in the end-Precambrian isotope record of the Lesser Himalaya. Nature 327, 699702.CrossRefGoogle Scholar
Astashkin, V. A., Varlamov, A. I., Esakova, N. V., Zhuravlev, A. Yu., Repina, L. N., Rozanov, A. Yu., Fedrov, A., & Shabanov, YU. R., 1990. Guidebook for excursion on the Aldan and Lena Rivers, Siberian Platform. Novosibirsk: Academy of Sciences, USSR.Google Scholar
Berner, R. A., 1989. Atmospheric carbon dioxide levels over Phanerozoic time. Science 249, 1382–6.CrossRefGoogle Scholar
Boucot, A., 1990. Phanerozoic sextinctions: how similar are they to each other? In Extinction Events in Earth History (eds Kauffman, E. G., and Walliser, O. H.), pp. 530. Lecture Notes in Earth Sciences no. 30. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Brasier, M. D., 1989. Towards a biostratigraphy of the earliest skeletal biotas. In The Precambrian-Cambrian boundary (eds Cowie, J. W., and Brasier, M. D.), pp. 117165. Oxford: Clarendon Press.Google Scholar
Brasier, M. D., 1990 a. Phosphogenic events and skeletal preservation across the Precambrian-Cambrian boundary interval. In Phosphorite research and development (eds Notholt, A. J. G., and Jarvis, I.,), pp. 289303. Geological Society Special Publication no. 52.Google Scholar
Brasier, M. D., 1990 b. Nutrients in the early Cambrian. Nature 347, 521–2.CrossRefGoogle Scholar
Brasier, M. D., 1992. Nutrient-enriched waters (NEW) and the early Cambrian skeletal fossils record. Journal of the Geological Society, London 149, 621–30.CrossRefGoogle Scholar
Brasier, M. D., 1993. Towards a carbon isotope stratigraphy of the Cambrian System: potential of the Great Basin succession. In High Resolution Stratigraphy (eds Hailwood, E. A., and Kidd, R. B.), pp. 341–50. Geological Society Special Publication no. 70.Google Scholar
Brasier, M. D., Magaritz, M., Corfield, R., Huilin, Luo, Xlche, Wu, Lln, Ouyang, Zhiwen, Jiang, Hamdi, B., Tinggui, He, & Fraser, A. G., 1990. The carbon- and oxygen-isotope record of the Precambrian—Cambrian boundary interval in China and Iran and their correlation. Geological Magazine 127, 319–32.CrossRefGoogle Scholar
Brasier, M. D., Anderson, M. M., & Corfield, R. M., 1992. Oxygen- and carbon-isotope stratigraphy of early Cambrian carbonates in Southeastern Newfoundland and England. Geological Magazine 129, 269–75.CrossRefGoogle Scholar
Brasier, M. D., Khomentovsky, V. V., & Corfield, R. M., 1993. Stable isotopic calibration of the earliest skeletal fossil assemblages in eastern Siberia (Precambrian-Cambrian boundary). Terra Nova 5, 225–32.CrossRefGoogle Scholar
Brasier, M. D., Corfield, R. M., Derry, L. A., Rozanov, A. Yu., & Zhuravlev, A. Yu., 1994. Multiple δ13C excursions spanning the Cambrian explosion to the Botomian crisis in Siberia. Geology 22, 455–8.2.3.CO;2>CrossRefGoogle Scholar
Conway Morris, S., 1987. The search for the Precambrian-Cambrian boundary. American Scientists 75, 157–67.Google Scholar
Cook, P. J., & Shergold, J. H., 1985. Phosphorus, phosphorites and skeletal evolution at the Precambrian-Cambrian boundary. Nature 308, 231–6.CrossRefGoogle Scholar
Cowie, J. W., & Brasier, M. D., (eds) 1989. The Precambrian-Cambrian boundary. Oxford Monographs in Geology and Geophysics no. 12.Google Scholar
Dalziel, I. W. D., 1991. Pacific margins of Laurentia and East Antarctica-Australia as a conjugate rift pair: evidence and implications for an Eocambrian supercontinent. Geology 19, 598601.2.3.CO;2>CrossRefGoogle Scholar
Debrenne, F., 1991. Extinction of the Archaeocyatha. Historical Biology 5, 95106.CrossRefGoogle Scholar
Debrenne, F., Lafuste, J., & Zhuravlev, A., 1990. Coralomorphes et spongiomorphes a l'aube du Cambrien. Bulletin de Museum Histoire Naturelle Paris 4e, ser. 12, sect. C, No. 1, 1739.Google Scholar
Debrenne, F., Rozanov, A., & Zhuravlev, A., 1990. Regular Archaeocyaths. Morphology. Systematics. Biostratigraphy. Palaeogeography. Biological affinities. Paris: Cahiers de Paleontologie.Google Scholar
Derry, L. A., Kaufman, A. J., & Jacobsen, S. B., 1992. Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes. Geochemica et Cosmochimica Acta 56, 1317–29.CrossRefGoogle Scholar
Donnelly, T. H., Shergold, J. H., Southgate, P. N., & Barnes, C. J., 1990. Events leading to global phosphogenesis around the Precambrian-Cambrian boundary. In Phosphorite research and development (eds Notholt, A. J. G., and Jarvis, I.), pp. 273–87, Geological Society Special Publication no. 52.Google Scholar
Federov, A. B., & Zhuravlev, A. Yu., 1993. Oldest biomineralized organism Cloudina. Abstracts of the Biomineralization Symposium, Monaco, 1993.Google Scholar
Gonzalez, A., & Lohmann, K. C., 1985. Carbon and oxygen isotopic composition of Holocene reefal carbonates. Geology 13, 811–14.2.0.CO;2>CrossRefGoogle Scholar
Grant, S. W. F., 1992. Carbon isotopic vital effect and organic diagenesis, Lower Cambrian Forteau Formation, northwest Newfoundland: Implications for δ13C chemostratigraphy. Geology 20, 243–6.2.3.CO;2>CrossRefGoogle Scholar
Hudson, J. D., & Anderson, T. F., 1989. Ocean temperatures and isotopic composition through time. Transactions of the Royal Society of Edinburgh, Earth Sciences 80, 183–92.CrossRefGoogle Scholar
Irwin, H., Curtis, C., & Coleman, M., 1977. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269, 209–13.CrossRefGoogle Scholar
Khomentovsky, V. V., & Karlova, G. A., 1993. Biostratigraphy of the Vendian-Cambrian beds and lower Cambrian boundary in Siberia. Geological Magazine 130, 2945.CrossRefGoogle Scholar
Khomentovsky, V. V., & Repina, L. N., 1965. Lower Cambrian Stratotype Region of the Siberian Platform. Moscow: Nauka, 200 pp. (in Russian).Google Scholar
Kirschvink, J. L., & Rozanov, A. YU., 1984. Magnetostratigraphy of Lower Cambrian strata from the Siberian Platform: a palaeomagnetic pole and a preliminary polarity time-scale. Geological Magazine 121, 189203.CrossRefGoogle Scholar
Kirschvink, J., Magaritz, M., Ripperdan, R. L., Zhuravlev, A. YU., & Rozanov, A. YU., 1991. The Precambrian/Cambrian boundary: magnetostratigraphy and carbon isotopes resolve correlation problems between Siberia, Morocco and south China. GSA Today 1, 6971, 87, 91.Google Scholar
Knoll, A. H., & Walter, M. R., 1992. Latest Proterozoic stratigraphy and earth history. Nature 356, 673–8.CrossRefGoogle ScholarPubMed
Kruse, P. D., & Debrenne, F., 1989. Review of archaeocyath microstructure. Memoir of the Association of Australasian Palaeontologists 8, 133–41.Google Scholar
Lambert, I. B., Walter, M. R., Wenlong, Zang, Songnian, Lu, & Guogan, Ma. 1987. Palaeoenvironment and carbon isotope stratigraphy of the Yangtze Platform. Nature 325, 140–2.CrossRefGoogle Scholar
Latham, A., & Riding, R., 1990. Fossil evidence for the location of the Precambrian/Cambrian boundary in Morocco. Nature 344, 752–4.CrossRefGoogle Scholar
Magaritz, M., 1989. 13C Minima follows extinction events: A clue to faunal radiation. Geology 17, 337–40.2.3.CO;2>CrossRefGoogle Scholar
Magaritz, M., Holser, W. T., & Kirschvink, J. L., 1986. Carbon-isotope events across the Precambrian-Cambrian boundary on the Siberian Platform. Nature 320, 258–9.CrossRefGoogle Scholar
Magaritz, M., Kirschvink, J. L., Latham, A. J., Zhuravlev, A. YU., & Rozanov, A. YU., 1991. Precambrian/Cambrian boundary problem: Carbon isotope correlations for Vendian and Tommotian time between Siberia and Morocco. Geology 19, 847–50.2.3.CO;2>CrossRefGoogle Scholar
Nikolaeva, I. V., and others 1987. Lower Cambrian of the south-east of the Siberian Platform (lithology, fades, palaeoecology). Trudy Instituta Geologii i Geofiziki Sibirskigi Otdeleniya Akademii Nauk SSSR 659, 1229 (in Russian).Google Scholar
Pokrovsky, B. G., & Missarzhevsky, V. V., 1993. Isotopic correlation of Precambrian and Cambrian of the Siberian platform. Doklady Akademy Nauk 329, 768–71 (in Russian).Google Scholar
Popov, L. Y., 1992. The Cambrian radiation of brachiopods. In Origin and Early Evolution of the Metazoa (eds Lipps, J. H., and Signor, P. W.), pp. 399422. New York: Plenum.CrossRefGoogle Scholar
Repina, L. N., 1981. Trilobite biostraitgraphy of the lower Cambrian stages in Siberia. Open-File Rept US Dept Interior, Geological Survey 81–743, 173–80.Google Scholar
Rozanov, A. Yu., 1967. The Cambrian Lower Boundary Problem. Geological Magazine 104, 415–34.CrossRefGoogle Scholar
Rozanov, A. Yu., 1973. Regularities in the morphological evolution of archaeocyaths and the problems of stage subdivision of the Lower Cambrian. Trudy Instituta Geologii, Akademii Nauka, SSSR no. 241 (in Russian).Google Scholar
Rozanov, A. Yu., 1992. Some problems concerning the Precambrian-Cambrian transition and the Cambrian faunal radiation. Journal of the Geological Society, London 149, 593–8.CrossRefGoogle Scholar
Rozanov, A. Yu., & Debrenne, F., 1974. Age of archaeocyathid assemblages. American Journal of Science 274, 833–48.CrossRefGoogle Scholar
Rozanov, A. Yu., & Missarzhevsky, V. V., 1966. Biostratigraphy and fauna of the Lower Cambrian Horizons. Trudy Instituta Geologii Akademii Nauka SSSR no. 148 (in Russian).Google Scholar
Rozanov, A. Yu, Missarzhevsky, V. V., Volkova, N. A., Voronova, L. G., Krylov, I. N., Keller, B. M., Korolyuk, I. K., Lendzion, K., Michniak, R., Pykhova, N. G., & Sidorov, A. D., 1969. The Tommotian Stage and the Cambrian Lower Boundary Problem. Academy of Sciences of the USSR, Transactions vol. 206. Moscow: Publishing Office “Nauka”.Google Scholar
Rozanov, A. Yu., & Sokolov, B. S., 1984. Lower Cambrian Stage Subdivision, Stratigraphy. Moscow: Akad. Nauk SSSR, Izdat. Nauka.Google Scholar
Rozanov, A. Yu., & Zhuravlev, A. Yu., 1992. The Lower Cambrian Fossil Record of the Soviet Union. In Origin and Early Evolution of the Metazoa (eds Lipps, J. H., and Signor, P. W.), pp. 205–82. New York: Plenum Press.CrossRefGoogle Scholar
Raaben, M. E., (ed.) 1969. The Tommotian Stage and the Cambrian lower boundary problem. Moscow: Trudy Geologicheskii Institut, Nauka, Moscow no. 206.Google Scholar
Sepkoski, J. J. Jr, 1992. Major bioevents during the Palaeozoic Era: a view from global taxonomic data bases. Fifth International Conference on Global Bio-Events, Gottingen, Abstracts Volume, 100–1.Google Scholar
Strauss, H., De Marais, D. J., Hayes, J. M., & Summons, R. E., 1992. The carbon isotopic record. In The Proterozoic Biosphere (eds Schopf, J. W., and Klein, C.), pp. 117–27. Cambridge University Press.Google Scholar
Tucker, M. E., 1986. Carbon isotope excursions in Precambrian-Cambrian boundary beds, Morocco. Nature 319, 4850.CrossRefGoogle Scholar
Tucker, M. E., & Wright, V. P., 1990. Carbonate sedimentology. Oxford: Blackwell.CrossRefGoogle Scholar
Veizer, J., Holser, W. T., & Wilgus, C. K., 1980. Correlation of 13C/12C and 34S/32S secular variations. Geochemica et Cosmochimica Acta 44, 579–87.CrossRefGoogle Scholar
Zhuravlev, A. Yu., 1986. Evolution of archaeocyathans and palaeobiogeography of the early Cambrian. Geological Magazine 123, 377–85.CrossRefGoogle Scholar