Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T00:54:12.442Z Has data issue: false hasContentIssue false

Cadomian orogenic collapse in the Ibor and Alcudia anticlines of the Central Iberian Zone, Spain

Published online by Cambridge University Press:  11 May 2021

J. Javier Álvaro*
Affiliation:
Instituto de Geociencias (CSIC-UCM), Dr. Severo Ochoa 7, 28040 Madrid, Spain
Saturnino Lorenzo
Affiliation:
Departamento de Ingeniería Geológica y Minera – IGeA, Universidad de Castilla-La Mancha, Manuel Meca 1, 13400Almadén, Spain
*
Author for correspondence: J. Javier Álvaro, Email: [email protected]

Abstract

In the Central Iberian Zone, the Cadomian orogenic collapse is represented by chaotic megabreccias, olistostromes and mélange deposits reflecting a drastic change from slope-related deposits, fed by denudation of the Cadomian arc, to offshore-dominant settings episodically punctuated by phosphogenetic processes. In the Ibor and Alcudia anticlines, the pre-rift unconformity is marked by paraconformable to angular discordant contacts separating variable tilted strata of the Ediacaran Lower Alcudian – Domo Extremeño Supergroup and the upper Ediacaran – lower Terreneuvian Ibor Group from the overlying Terreneuvian San Lorenzo and Fuentepizarra formations. The sedimentation of the San Lorenzo Formation reflects two palaeogeographic scenarios: (i) a low-angle stable basement recording shoaling-upward siliciclastic cycles, and (ii) perturbations of basement fault scarps feeding slope-related conglomeratic channels, with NE-directed palaeocurrents, and sourced from topographic palaeohighs controlled by the movement along synsedimentary normal fault systems, such as the so-called El Guijo Fault. The intra-Fortunian age of the pre-rift unconformity is constrained by the ichno- and microfossil content of the succession, and is bracketed between the first occurrence of Treptichnus pedum in the Arrocampo Formation (Ibor Group) and of Anabarella plana in the Fuentepizarra Formation.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afify, AM, Sanz-Montero, ME, Calvo, JP and Wanas, HA (2015) Diagenetic origin of ironstone crusts in the Lower Cenomanian Bahariya Formation, Bahariya Depression, Western Desert, Egypt. Journal of African Earth Sciences 101, 333–49.CrossRefGoogle Scholar
Álvaro, JJ, Cortijo, I, Jensen, S, Lorenzo, S, Palacios, T and Pieren, AP (2019) Updated stratigraphic framework and biota of the Ediacaran and Terreneuvian in the Alcudia-Toledo Mountains, Central Iberian Zone, Spain. Estudios Geológicos 75, e093. doi: 10.3989/egeol.43620.548.CrossRefGoogle Scholar
Álvaro, JJ, Cortijo, I, Jensen, S, Martí Mus, M and Palacios, T (2020) Cloudina-microbial reef resilience to substrate instability in a Cadomian retro-arc basin of the Iberian Peninsula. Precambrian Research 336, 105479. doi: 10.1016/j.precamres.2019.105479.CrossRefGoogle Scholar
Álvaro, JJ, Shields, GA, Ahlberg, P, Jensen, S and Palacios, T (2016) Ediacaran–Cambrian phosphorites from the western margins of Gondwana and Baltica. Sedimentology 63, 350–77.CrossRefGoogle Scholar
Andonaegui, P, Arenas, R, Albert, R, Sánchez Martínez, S, Díez Fernández, R and Gerdes, A (2016) The last stages of the Avalonian-Cadomian arc in NW Iberian Massif: isotopic and igneous record for a long-lived peri-Gondwanan magmatic arc. Tectonophysics 681, 614.CrossRefGoogle Scholar
Apalategui, O, Eguíluz, L, Martín-Torres, LM and Palacios, T (2009) Unidades preordovícicas y megaestructuras cadomienses en La Serena y La Serena extremeña (Macizo Ibérico meridional). Geogaceta 47, 141–4.Google Scholar
Ballèvre, M, Le Goff, E and Hébert, R (2001) The tectonothermal evolution of the Cadomian belt of northern Brittany, France: a Neoproterozoic volcanic arc. Tectonophysics 331, 1943.CrossRefGoogle Scholar
Cambeses, A, Scarrow, JH, Montero, P, Lázaro, C and Bea, F (2017) Palaeogeography and crustal evolution of the Ossa-Morena Zone, Southwest Iberia, and the North Gondwana margin during the Cambro–Ordovician: a review of isotopic evidence. International Geology Review 59, 94130.CrossRefGoogle Scholar
Catuneanu, O (2002) Sequence stratigraphy of clastic systems: concepts, merits, and pitfalls. Journal of African Earth Sciences 35, 143.CrossRefGoogle Scholar
Chan, MA, Parry, WT and Bowman, JR (2000) Diagenetic hematite and manganese oxides and fault-related fluid flow in Jurassic sandstones, southeastern Utah. American Association of Petroleum Geologists Bulletin 84, 1281–310.Google Scholar
Cortijo, I, Martí Mus, M, Jensen, S and Palacios, T (2010) A new species of Cloudina from the terminal Ediacaran of Spain. Precambrian Research 176, 110.CrossRefGoogle Scholar
Cortijo, I, Martí Mus, M, Jensen, S and Palacios, T (2015) Late Ediacaran skeletal body fossil assemblage from the Navalpino anticline, central Spain. Precambrian Research 267, 186–95.CrossRefGoogle Scholar
Cummins, WA (1962) The greywacke problem. Geological Journal 3, 5172.CrossRefGoogle Scholar
Fuenlabrada, JM, Arenas, R, Sánchez Martínez, S, Díez Fernández, R, Pieren, AP, Pereira, MF, Chichorro, M and Silva, JB (2020) Geochemical and isotopic (Sm–Nd) provenance of Ediacaran–Cambrian metasedimentary series from the Iberian massif. Paleoreconstruction of the North Gondwana margin. Earth-Science Reviews 201, 103079. doi: 10.1016/j.earscirev.2019.103079.CrossRefGoogle Scholar
Gabaldón López, V and Hernández Urroz, J (1989) Los fosfatos del Precámbrico–Cámbrico de la Zona Centro-Ibérica, un modelo de yacimiento de origen sedimentario. In XII Congreso Español de Sedimentología. Simposios y Conferencias, pp. 283–97.Google Scholar
Gabaldón López, V, Hernández Urroz, J, Lorenzo Álvarez, S, Picart Boira, J, Santamaría Casanovas, J and Solé Pont, FJ (1987) Sedimentary facies and stratigraphy of Precambrian–Cambrian phosphorites on the Valdelacasa anticline, Central Iberian Zone, Spain. In Phosphate Deposits of the World. Vol. 2. Proterozoic and Cambrian Phosphorites (eds Cook, PJ and Shergold, JH), pp. 422–8. Cambridge: Cambridge University Press.Google Scholar
García-Hidalgo, JF (1985) Estratigrafía y sedimentología del Alcudiense superior en los anticlinorios de Ibor y Navezuelas-Robledollano. Seminarios de Estratigrafía 12, 1190.Google Scholar
Gil Serrano, G (1985) Mapa Geológico de España a Escala 1:50.000, hoja nº 707, Logrosán. Madrid: IGME.Google Scholar
Gubanov, AP and Peel, JS (1999) Oelandiella, the earliest Cambrian helcionelloid mollusc from Siberia. Palaeontology 42, 211–22.CrossRefGoogle Scholar
Gubanov, AP and Peel, JS (2003) The early Cambrian helcionelloid mollusc Anabarella Vostokova. Palaeontology 46, 1073–87.CrossRefGoogle Scholar
Julivert, M, Fontboté, JM, Ribeiro, A and Conde, LS (1972) Mapa Tectónico de la Península Ibérica y Baleares, Escala 1:1.000.000. Madrid: IGME.Google Scholar
Khomentovsky, VV and Karlova, GA (1994) Ecological peculiarities of the Vendian–Cambrian small shelly fauna in the Siberian platform. Stratigraphy and Geological Correlation 3, 206–15 [in Russian].Google Scholar
Kouchinsky, A, Bengtson, S, Landing, E, Steiner, M, Vendrasco, M and Ziegler, K (2017) Terreneuvian stratigraphy and faunas of the Anabar Uplift, Siberia. Acta Palaeontologica Polonica 62, 311440.CrossRefGoogle Scholar
Li, GX, Zhao, X, Gubanov, A, Zhu, M Y and Na, L (2011) Early Cambrian mollusc Watsonella crosbyi: a potential GSSP index fossil for the base of the Cambrian Stage 2. Acta Geologica Sinica 85, 309–19.CrossRefGoogle Scholar
Lillo Ramos, FJ, Pieren, A, Hernández Samaniego, A, Ólive Davo, A, Carreras Suárez, F, Gutiérrez-Marco, JC, Sarmiento, GN, Fernández Remolar, DC and Gabaldón, V (1998) Mapa Geológico de España a Escala 1:50.000, hoja nº 862, Santa Elena. Madrid: IGME.Google Scholar
Linnemann, U, D’Lemos, R, Drost, K, Jeffries, T, Gerdes, A, Romer, RL, Samson, SD and Strachan, RA (2008) Cadomian tectonics. In The Geology of Central Europe. Volume 1: Precambrian and Palaeozoic (ed. McCann, T), pp. 103–54. London: The Geological Society.CrossRefGoogle Scholar
Linnemann, U, Gerdes, A, Hofmann, M and Marko, L (2014) The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton – constraints from U–Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precambrian Research 244, 236–78.CrossRefGoogle Scholar
Linnemann, U, Pieren, A, Hofmann, M, Drost, K, Quesada, C, Axel, G, Marko, L, Gärtner, A, Zieger, J and Jens, U (2018) A ˜565 Ma old glaciation in the Ediacaran of peri-Gondwanan West Africa. International Journal of Earth Sciences 107, 885911.CrossRefGoogle Scholar
Lorenzo Álvarez, S and Solé, J (1988) La discordancia intraprecámbrica y la estratigrafía del Precámbrico superior en el sector suroriental del Anticlinal de Abenójar-Tirteafuera. II Congreso Español de Geología, Comunicaciones 1, 115–18.Google Scholar
McPherson, JH, Shanmugam, RJ and Moiola, RJ (1998) Fan deltas and braid deltas: conceptual problems. In Fan Deltas: Sedimentology and Tectonic Settings (eds Nemec, W and Steel, RJ), pp. 1422. London: Blackie and Son.Google Scholar
Monteserín López, V and López, MJ (1985) Mapa Geológico de España a Escala 1:50.000, hoja nº 682, Sevilleja de la Jara. Madrid: IGME.Google Scholar
Murphy, JB, Pisaresvsky, SA, Nance, RD and Keppie, D (2004) Neoproterozoic–Early Paleozoic evolution of peri-Gondwanan terranes: implications for Laurentia–Gondwana connections. International Journal of Earth Sciences 93, 659–82.CrossRefGoogle Scholar
Nance, RD, Gutiérrez-Alonso, G, Keppie, JD, Linnemann, U, Murphy, JB, Quesada, C, Strachan, RA and Woodcock, NH (2012) A brief history of the Rheic Ocean. Geoscience Frontiers 3, 125–35.CrossRefGoogle Scholar
Nozal Martín, F (1985) Mapa Geológico de España a Escala 1:50.000, hoja nº 708, Santa Quiteria. Madrid: IGME.Google Scholar
Nozal Martín, F and Pérez Rojas, A (1985) Mapa Geológico de España a Escala 1:50.000, hoja nº 681, Castañar de Ibor. Madrid: IGME.Google Scholar
Ortega Girones, E, Hernández Urroz, J and González Lodeiro, F (1988) Distribución paleogeográfica y control estructural de los materiales anteordovícicos en la parte suroriental del autóctono de la zona Centroibérica. II Congreso Geológico de España, Granada. Simposio Sobre Cinturones Orogénicos, pp. 85–9.Google Scholar
Palero, FJ (1993) Tectónica pre-hercínica de las series infraordovícicas del anticlinal de Alcudia y la discordancia intraprecámbrica en su parte oriental (sector meridional de la Zona Centroibérica). Boletín Geológico y Minero 103, 227–42.Google Scholar
Perconig, E, Vázquez, F, Velando, F and Leyva, F (1986) Proterozoic and Cambrian phosphorites – deposits: Fontanarejo, Spain. In Phosphate Deposits of the World. Vol. 1. Proterozoic and Cambrian Phosphorites (eds Cook, PJ and Shergold, JH), pp. 220–34. Cambridge: Cambridge University Press.Google Scholar
Picart, J (1988) Facies e interpretación de los yacimientos fosfatados del Cámbrico inferior de Fontanarejo, Zona Centro-Ibérica (Ciudad Real). II Congreso Español de Geología, Comunicaciones 1, 157–60.Google Scholar
Pichler, T and Veizer, J (1999) Precipitation of Fe (III) oxyhydroxide deposits from shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea. Chemical Geology 162, 1531.CrossRefGoogle Scholar
Pieren Pidal, AP (2009) Rasgos geológicos de la comarca de Puertollano y del valle del Alcudia (Ciudad Real, España). Memorias de la Real Sociedad Española de Historia Natural (serie 2) 6, 95132.Google Scholar
Pieren, AP and García-Hidalgo, JF (1999) El Alcudiense Superior del anticlinal de Alcudia revisitado (Ciudad Real, España central). In XV Reunión de Geología del Oeste Peninsular. International Meeting on Cadomian Orogens, pp. 207–14. Badajoz: Diputación de Badajoz Press.Google Scholar
Pufahl, PK (2010) Bioelemental sediments. In Facies Models, 4th ed. (eds James, NP and Dalrymple, RW), pp. 477503. St John’s, NL: Geological Association of Canada.Google Scholar
Puteanus, D, Glasby, GP, Stoffers, P, Kunzendorf, H (1991) Hydrothermal iron-rich deposits from the Teahitia-Mehitia and Macdonald hot spot areas, Southwest Pacific. Marine Geology 98, 389409.CrossRefGoogle Scholar
Reitner, JR, Luo, C and Duda, JP (2012) Early sponge remains from the Neoproterozoic–Cambrian phosphate deposits of the Fontanarejo area (Central Spain). Journal of Guizhou University (Natural Sciences) 29 (Suppl. 1), 184–6.Google Scholar
Rodríguez-Alonso, MD, Peinado, M, López-Plaza, M, Franco, P, Carnicero, A and Gonzalo, JC (2004) Neoproterozoic–Cambrian synsedimentary magmatism in the Central Iberian Zone (Spain): geology, petrology and geodynamic significance. International Journal of Earth Sciences 93, 897920.CrossRefGoogle Scholar
San José, MA de, Pieren Pidal, AP, García-Hidalgo, JF, Vilas Minondo, L, Herranz Araújo, P, Peláez Pruneda, JR and Perejón, A (1990) Ante-Ordovician stratigraphy. In Pre-Mesozoic Geology of Iberia (eds Dallmeyer, RD and Martínez García, E), pp. 147–59. Berlin: Springer.Google Scholar
Sánchez-García, T, Bellido, F, Pereira, MF, Chichorro, M, Quesada, C, Pin, Ch and Silva, JB (2010) Rift-related volcanism predating the birth of the Rheic Ocean (Ossa-Morena zone, SW Iberia). Gondwana Research 17, 392407.CrossRefGoogle Scholar
Sánchez-García, T, Chichorro, M, Solá, R, Álvaro, JJ, Díez Montes, A, Bellido, F, Ribeiro, ML, Quesada, C, Lopes, JC, Dias da Silva, I, González-Clavijo, E, Gómez Barreiro, J and López-Carmona, A (2019) The Ediacaran–Early Ordovician rift stage in the Gondwanan units of the Iberian Massif. In The Geology of Iberia: A Geodynamic Approach (eds Quesada, C and Oliveira, JT), pp. 2774. Regional Geology Review Series 2. Heidelberg: Springer.CrossRefGoogle Scholar
Santamaría, J (1996) Origen de los elementos fosfatados en los materiales precámbrico–cámbricos de la Zona Centro-Ibérica (España). In Early Paleozoic Evolution in NW Gondwana (eds Baldis, B and Aceñolaza, FG), pp. 310–12. Serie Correlación Geológica 12. Buenos Aires: INSUGEO.Google Scholar
Santamaría Casanovas, J and Pardo Alonso, M (1994) Las megabrechas del Membrillar y su relación con el sustrato Precámbrico–Cámbrico de la zona Centro-Ibérica. Geogaceta 15, 10–3.Google Scholar
Santamaría Casanovas, J and Remacha Grau, E (1994) Variaciones laterales del “Nivel de Fuentes”, Precámbrico–Cámbrico de la Zona Centro-Ibérica. Geogaceta 15, 14–6.Google Scholar
Schaetzl, R and Anderson, S (2005) Soils: Genesis and Geomorphology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stampfli, GM and Borel, GD (2004) The TRANSMED transects in space and time: constraints on the paleotectonic evolution of the Mediterranean domain. In The TRANSMED Atlas: The Mediterranean Region from Crust to Mantle (eds Cavazza, W, Roure, F, Spakman, W, Stampfli, GM and Ziegler, P), pp. 5380. Heidelberg: Springer Verlag.CrossRefGoogle Scholar
Talavera, C, Montero, P, Martínez Poyatos, D and Williams, IS (2012) Ediacaran to Lower Ordovician age for rocks ascribed to the Schist-Greywacke Complex (Iberian Massif, Spain): evidence from detrital zircon SHRIMP U–Pb geochronology. Gondwana Research 22, 928–42.CrossRefGoogle Scholar
Talavera, C, Martínez Poyatos, D and González Lodeiro, F (2015) SHRIMP U–Pb geochronological constraints on the timing of the intra-Alcudian (Cadomian) angular unconformity in the Central Iberian Zone (Iberian massif, Spain). International Journal of Earth Sciences 104, 1739–57.CrossRefGoogle Scholar
Ugidos, JM, Barba, P and Valladares, MI (2020) Review of the Upper Ediacaran–Lower Cambrian detrital series in Central and North Iberia: NE Africa as possible source area. Stratigraphy & Timescales 5, 147268.CrossRefGoogle Scholar
Valladares, MI, Barba, P, Ugidos, JM, Colmenero, JR and Armenteros, I (2000) Upper Neoproterozoic–Lower Cambrian sedimentary successions in the Central Iberian Zone (Spain): sequence stratigraphy, petrology and chemostratigraphy. Implications for other European zones. International Journal of Earth Sciences 89, 220.CrossRefGoogle Scholar
Vidal, G, Palacios, T, Gámez-Vintaned, JA, Díaz Balda, MA and Grant, SWF (1994) Neoproterozoic–early Cambrian geology and palaeontology of Iberia. Geological Magazine 131, 729–65.CrossRefGoogle Scholar
Vidal, G, Palacios, T, Moczydɬoska, M and Gubanov, AP (1999) Age constraints from small shelly fossils on the early Cambrian terminal Cadomian Phase in Iberia. GFF 121, 137–43.CrossRefGoogle Scholar
Vidal, G, Palacios, T, Moczydɬoska, M and Lorenzo Álvarez, S (1995) A new find of “Tommotian” small shelly fossils from southern Spain. In XIII Reunión de Geología del Oeste Peninsular, PIGG 319–320–376, Abstracts, pp. 166–7.Google Scholar
von Raumer, JF, Stampfli, GM and Bussy, F (2003) Gondwana-derived microcontinents: the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365, 722.CrossRefGoogle Scholar
Wright, VP, Sloan, RJ, Valero-Garcés, B and Garvie, LAJ (1992) Groundwater ferricretes from the Silurian of Ireland and Permian of the Spanish Pyrenees. Sedimentary Geology 77, 3747.CrossRefGoogle Scholar
Yin, SL, Hu, ZM, Ren, X, Wu, XJ, Chen, YH, Zheng, LJ and Jiang, ZB (2016) Reservoir architecture patterns of sandy gravel braided distributary channels. A case study of Triassic Upper Karamay Formation, Xinjiang oilfield. Petroleum 2, 117–29.CrossRefGoogle Scholar