Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T16:04:43.164Z Has data issue: false hasContentIssue false

“Algal Dust” and the Finer-grained Varieties of Carboniferous Limestone

Published online by Cambridge University Press:  01 May 2009

Extract

Certain of the Lower Carboniferous algae are preserved as moulds in a fine-grained calcareous matrix precipitated by their own life processes. The cell walls of the alga are not preserved. This observation applies to the genera Ortonella, Mitcheldeania, Bevocastria, and Girvanella. In the case of Mitcheldeania the filaments are so close together and so parallel that an impression of a definite wall may be obtained, but occasional irregularities and a comparison of the microstructure with that of other forms leaves no doubt that this too is a precipitate.

Type
Articles
Copyright
Copyright © Cambridge University Press 1941

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bradley, W. H., 1929. Cultures of Algal Oolites. Amer. Journ. Sci., Ser. v, xviii, 145.CrossRefGoogle Scholar
Cayeux, L., 1935. Les Roches sedimentaires de France. Roches Carbonatées. Paris. Masson et Cie.Google Scholar
Correns, C. W., 1937. Ubersicht uber die Mineralfazies des gesamten Gebietes. Wissenschaftl. Ergebn. d. Deutsch. Atlant. Expedition auf dem Forsch-. u. Vermess.-Schiff “Meteor”. 1925–7. Bd. 3, T. 3, 278.Google Scholar
Ccllis, C. G., 1904. The Mineralogical Changes observed in the Cores of the Funafuti Borings. The Atoll of Funafuti, 392, The Royal Society, London.Google Scholar
Dixon, E. E. L., and Vaughan, A., 1911. The Carboniferous Succession in Gower (Glamorganshire), with Notes on its Fauna and Conditions of Deposition. Quart. Journ. Geol. Soc., lxvii, 477.CrossRefGoogle Scholar
Dorlodot, L. de, 1910. Description succincte des Assises du Calcaire Carbonifère de la Belgique et leurs Principaux Facies Lithologiques. Bull. Soc. beige Geol., Brux. xxiii, Mém., 175.Google Scholar
Eardley, A. J., 1938. Sediments of Great Salt Lake, Utah. Bull. Amer. Assoc. Petroleum Geol., xxii, 1305.Google Scholar
Garwood, E. J., 1913. On the Important Part played by Calcareous Algae at certain Geological Horizons, with Special Reference to the Palaeozoic Rocks. Geol. Mag., 1, 440, 490, 545 (498).CrossRefGoogle Scholar
Garwood, E. J. 1914. Some new Rock-building Organisms from the Lower Carboniferous Beds of Westmorland. Geol. Mag., li, 265.CrossRefGoogle Scholar
Hatch, F. H., and Rastall, R. H., 1938. The Petrology of the Sedimentary Rocks. 3rd edition revised by Black, M., London.Google Scholar
Kaisin, F., 1927. Contribution à l'Étude des Caractères Lithologiques et du Mode de Formation des Roches Calcaires de Belgique. Mém. Acad. R. Belg., ser. 2 (4to), viii, No. 5.Google Scholar
Kuhn, O., 1928. “Hydrozoa.” Fossil. Catal. 1: Animalia, edit. Diener, C., Berlin, 38.Google Scholar
Pia, J. V., 1928. Die Anpassungsformen der Kalkalgen. Palaeobiologica, i, 211.Google Scholar
Pia, J. V. 1937. Die wichtigsten Kalkalgen des Jungpaläozoikums und ihre geologische Bedeutung. Compte Rendu Deuxième Congrès Strat. Carb., Heerlen, ii, 765.Google Scholar
Reynolds, S. H., 1921. The Lithological Succession of the Carboniferous Limestone (Avonian) of the Avon Section at Clifton. Quart. Journ. Geol. Soc., lxxvii, 213, (229).CrossRefGoogle Scholar
Sorby, H. C., 1879. Annual Address of the President. Quart. Journ. Geol. Soc., xxxv, 56.Google Scholar
Vaughan, A., 1915. Correlation of Dinantian and Avonian. Quart. Journ. Geol. Soc., lxxi, 1, (26).CrossRefGoogle Scholar