Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-23T17:25:51.361Z Has data issue: false hasContentIssue false

40Ar–39Ar ages and isotope geochemistry of Cretaceous basalts in northern Madagascar: refining eruption ages, extent of crustal contamination and parental magmas in a flood basalt province

Published online by Cambridge University Press:  07 June 2012

C. CUCCINIELLO
Affiliation:
Dipartimento di Scienze della Terra, Universita’ di Napoli Federico II, via Mezzocannone 8, 80134 Napoli, Italy
L. MELLUSO*
Affiliation:
Dipartimento di Scienze della Terra, Universita’ di Napoli Federico II, via Mezzocannone 8, 80134 Napoli, Italy
F. JOURDAN
Affiliation:
Western Australian Argon Isotope Facility Department of Applied Geology & JdL Centre, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia
J. J. MAHONEY
Affiliation:
School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
T. MEISEL
Affiliation:
General and Analytical Chemistry, Montanuniversität Leoben, Austria
V. MORRA
Affiliation:
Dipartimento di Scienze della Terra, Universita’ di Napoli Federico II, via Mezzocannone 8, 80134 Napoli, Italy
*
Author for correspondence: [email protected]

Abstract

The Madagascar Cretaceous igneous province exposed in the Mahajanga basin is represented by basalt and basaltic andesite lavas. New 40Ar–39Ar plateau ages (92.3 ± 2.0 Ma and 91.5 ± 1.3 Ma) indicate that the magmatism in the Mahajanga basin started about 92 Ma ago. Four geochemically distinct magma types (Groups A–D) are present. Group A and C rocks have low to moderate TiO2 (1.2–2.6 wt%), Nb (3–9 μg g−1) and Zr (82–200 μg g−1), and show large variations in ɛNdi (+0.1 to −10.8), 206Pb/204Pb (15.28 to 16.33) and γOs (+11.4 to +7378). The large isotopic variations, particularly in Os, Nd and Pb isotopic compositions, are likely due to crustal contamination. The low Pb isotope ratios observed in the Group A and C rocks suggest involvement of continental crust with low μ (238U/204Pb). Group B and D rocks have moderate to high TiO2 (2.2–4.9 wt%), Nb (8–24 μg g−1) and Zr (120–327 μg g−1). Age-corrected isotopes of Group B and D lavas show a small range in ɛNdi (+1.0 to +4.0) and a wide range in γOs (+128 to +1182). Values of 207Pb/204Pb are within the range for Groups A and C, but the Group D 206Pb/204Pb (16.52–17.08) and 208Pb/204Pb (37.51–38.01) values are higher, indicating a different crustal contaminant. Pb isotopic values of the Group B rocks seem to reflect the isotopic features of their mantle source. The magma groups of Mahajanga display a wide range of trace element and isotopic compositions that cannot be explained only by open-system crystallization processes but, rather, by distinct mantle sources.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baksi, A. K. 2007 a. A quantitative tool for evaluating alteration in undisturbed rocks and minerals – I: Water, chemical weathering and atmospheric argon. In Plates, Plumes, and Planetary Processes (eds Foulger, G. R. & Jurdy, D. M.), pp. 285303. Geological Society of America, Special Publication no. 430.Google Scholar
Baksi, A. K. 2007 b. A quantitative tool for detecting alteration in undisturbed rocks and minerals – II: Application to argon ages related to hotspots. In Plates, Plumes, and Planetary Processes (eds Foulger, G. R. & Jurdy, D. M.), pp. 305–33. Geological Society of America, Special Publication no. 430.Google Scholar
Banks, N., Cooper, B., Jenkins, S. & Razafindrakoto, E. 2008. Evidence for the onshore extension of the deep water Jurassic salt basin in the Majunga Basin, northwest Madagascar. Abstract, AAPG Annual Convention & Exhibition, San Antonio, Texas.Google Scholar
Besairie, H. 1964. Geological map of Madagascar. Tananarive: Service Géologique de Madagascar.Google Scholar
Besairie, H. & Collignon, M. 1972. Géologie de Madagascar I – Les terraines sédimentaires. Annales Géologiques Madagascar 35, 553 pp.Google Scholar
Boynton, W. V. 1984. Cosmochemistry of the rare earth elements: meteorite studies. In Rare Earth Element Geochemistry (ed. Henderson, P.), pp. 63114. Amsterdam: Elsevier.CrossRefGoogle Scholar
Collins, A. S. & Windley, B. F. 2002. The tectonic evolution of central and northern Madagascar and its place in the final assembly of Gondwana. Journal of Geology 110, 325–40.Google Scholar
Condie, K. C. 2005. TTGs and adakites: Are they both slab melts? Lithos, 80, 3344.CrossRefGoogle Scholar
Creaser, R. A., Papanastassiou, D. A. & Wasserburg, G. J. 1991. Negative thermal ion mass spectrometry of osmium, rhenium, and iridium. Geochimica et Cosmochimica Acta 55, 397401.Google Scholar
Cucciniello, C., Conrad, J., Grifa, C., Melluso, L., Mercurio, M., Morra, V., Tucker, R. D. & Vincent, M. 2011. Petrology and geochemistry of Cretaceous mafic and silicic dykes and spatially associated lavas in central–eastern coastal Madagascar. In Dyke Swarms: Keys for Geodynamic Interpretation (ed. Srivastava, R. K.), pp. 345–75. Berlin Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Cucciniello, C., Langone, A., Melluso, L., Morra, V., Mahoney, J. J., Meisel, T. & Tiepolo, M. 2010. U–Pb Ages, Pb–Os isotope ratios, and Platinum–Group Element (PGE) composition of the west–central Madagascar flood basalt province. Journal of Geology 118, 523–41.CrossRefGoogle Scholar
Dale, C. W., Pearson, D. G., Starkey, N. A., Stuart, F. M., Ellam, R. M., Larsen, L. M., Fitton, J. G. & Macpherson, C. G. 2009. Osmium isotopes in Baffin Island and West Greenland picrites: implications for the 187Os/188Os composition of the convecting mantle and the nature of high He/He mantle. Earth and Planetary Science Letters 278, 267–77.Google Scholar
DePaolo, D. J. 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters 53, 189202.CrossRefGoogle Scholar
De Waele, B., Thomas, R. J., Macey, P. H., Horstwood, M. S. A., Tucker, R. D., Pitfield, P. E. J., Schofield, D. I., Goodenough, K. M., Bauer, W., Key, R. M., Potter, C. J., Armstrong, R. A., Miller, J. A., Randriamananjara, T., Ralison, V., Rafahatelo, J.-M., Rabarimanana, M. & Bejoma, M. 2011. Provenance and tectonic significance of the Palaeoproterozoic metasedimentary successions of central and northern Madagascar. Precambrian Research 189, 1842.Google Scholar
Dostal, J., Dupuy, C., Nicollet, C. & Cantagrel, J. M. 1992. Geochemistry and petrogenesis of upper Cretaceous basaltic rocks from southern Madagascar. Chemical Geology 97, 199218.Google Scholar
Downes, H., Markwick, A. J. W., Kempton, P. D. & Thirlwall, M. F. 2001. The lower crust beneath cratonic north-east Europe: isotopic constraints from garnet granulite xenoliths. Terra Nova 13, 395400.CrossRefGoogle Scholar
Escrig, S., Capmas, F., Dupré, B., Allègre, C.-J. 2004. Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid–ocean–ridge basalts. Nature 431, 5963.Google Scholar
Gradstein, F. M., Ogg, J. G & Smith, A. G. 2005. A Geologic Time Scale 2004. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hart, S. R. 1984. A large-scale isotope anomaly in the southern Hemisphere mantle. Nature 309, 753–7.Google Scholar
Hofmann, C., Féraud, G. & Courtillot, V. 2000. 40Ar/39Ar dating of mineral separates and whole rocks from the Western Ghats lava pile: further constraints on duration and age of the Deccan Traps. Earth and Planetary Science Letters 180, 1327.CrossRefGoogle Scholar
Janney, P. E., le Roex, A. P. & Carlson, R. W. 2005. Hafnium isotope and trace element constraints on the nature of mantle heterogeneity beneath the central Southwest Indian Ridge (13°E to 47°E). Journal of Petrology 46, 2427–64.CrossRefGoogle Scholar
Jourdan, F., Féraud, G., Bertrand, H., Watkeys, M. K. & Renne, P. R. 2007. Distinct brief major events in the Karoo large igneous province clarified by new 40Ar/39Ar ages on the Lesotho basalts. Lithos 98, 195209.Google Scholar
Koppers, A. A. P. 2002. ArArCALC–software for 40Ar/39Ar age calculations. Computers & Geosciences 28, 605–19.Google Scholar
Kramers, J. D. & Tolstikhin, I. N. 1997. Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust. Chemical Geology 139, 75110.Google Scholar
Kreissig, K., Naegler, T. F., Kramers, J. D., van Reenen, D. D. & Smit, C. A. 2000. An isotopic and geochemical study of the northern Kaapvaal Craton and the Southern Marginal Zone of the Limpopo Belt: are they juxtaposed terranes? Lithos 50, 125.CrossRefGoogle Scholar
Lyubetskaya, T. & Korenaga, J. 2007. Chemical composition of Earth's primitive mantle and its variance: 1 Method and results. Journal of Geophysical Research, 112, 121.Google Scholar
Mahoney, J. J., le Roex, A. P., Peng, Z. X., Fisher, R. L. & Natland, J. H. 1992. Southwestern limits of Indian Ocean ridge mantle and the origin of low 206Pb/204Pb MORB: isotope systematics of the central Southwest Indian Ridge (17°–50°E). Journal of Geophysical Research 97, 19771–90.CrossRefGoogle Scholar
Mahoney, J. J., Natland, J. H., White, W. M., Poreda, R., Bloomer, S. H., Fisher, R. L. & Baxter, A. N. 1989. Isotopic and chemical provinces of the western Indian ocean spreading centers. Journal of Geophysical Research 94, 4033–52.Google Scholar
Mahoney, J. J., Nicollet, C. & Dupuy, C. 1991. Madagascar basalts: tracking oceanic and continental sources. Earth and Planetary Science Letters 104, 350–63.Google Scholar
Mahoney, J. J., Saunders, A. D., Storey, M. & Randriamanantenasoa, A. 2008. Geochemistry of the Volcan de l'Androy basalt – rhyolite complex, Madagascar Cretaceous igneous province. Journal of Petrology 49, 1069–96.Google Scholar
McBride, J. S., Lambert, D. D., Nicholls, I. A. & Price, R. C. 2001. Osmium isotopic evidence for crust-mantle interaction in the genesis of continental intraplate basalts from the Newer Volcanics Province, Southeastern Australia. Journal of Petrology 42, 1197–218.CrossRefGoogle Scholar
McDougall, I. & Harrison, T. M. 1999. Geochronology and Thermochronology by the 40Ar / 39 Ar Method. Oxford: Oxford University Press, 269 pp.Google Scholar
Melluso, L., Morra, V., Brotzu, P., D'Antonio, M. & Bennio, L. 2002. Petrogenesis of the Late Cretaceous tholeiitic magmatism in the passive margins of northeastern Madagascar. In Volcanic Rifted Margins (eds Menzies, M. A., Ebinger, C. J. & Baker, J.), pp. 8398. Geological Society of America, Special Paper no. 362.Google Scholar
Melluso, L., Morra, V., Brotzu, P., Franciosi, L., Petteruti Lieberknecht, A. M. & Bennio, L. 2003. Geochemical provinciality in the Cretaceous magmatism of northern Madagascar, and mantle source implications. Journal of the Geological Society, London 160, 477–88.Google Scholar
Melluso, L., Morra, V., Brotzu, P. & Mahoney, J. J. 2001. The Cretaceous igneous province of Madagascar: geochemistry and petrogenesis of lavas and dykes from the central – western sector. Journal of Petrology 42, 1249–78.CrossRefGoogle Scholar
Melluso, L., Morra, V., Brotzu, P., Razafiniparany, A., Ratrimo, V. & Razafimahatratra, D. 1997. Geochemistry and Sr–isotopic composition of the late Cretaceous flood basalt sequence of northern Madagascar: petrogenetic and geodynamic implications. Journal of African Earth Sciences 34, 371–90.Google Scholar
Melluso, L., Morra, V., Brotzu, P., Tommasini, S., Renna, M. R., Duncan, R. A., Franciosi, L. & d'Amelio, F. 2005. Geochronology and petrogenesis of the Cretaceous Antampombato–Ambatovy complex and associated dyke swarm, Madagascar. Journal of Petrology 46, 1963–96.CrossRefGoogle Scholar
Melluso, L., Morra, V. & Fedele, L. 2006. An overview of phase chemistry and magmatic evolution in the Cretaceous flood basalt province of northern Madagascar. Periodico di Mineralogia 75, 174–88.Google Scholar
Melluso, L., Sheth, H. C., Mahoney, J. J., Morra, V., Petrone, C. M. & Storey, M. 2009. Correlations between silicic volcanic rocks of the St. Mary's Islands (southwestern India) and eastern Madagascar: implications for Late Cretaceous India–Madagascar reconstructions. Journal of the Geological Society, London 166, 112.CrossRefGoogle Scholar
Meyzen, C. M., Ludden, J. N., Humler, E., Luais, B., Toplis, M. J., Mevel, C. & Storey, M. 2005. New insights into the origin and distribution of DUPAL isotope anomaly in the Indian Ocean mantle from MORB of southwest Indian Ridge. Geochemistry Geophysics Geosystems 6, Q11K11, doi:10.1029/2005GC000979.Google Scholar
Möller, A., Mezger, K. & Schenk, V. 1998. Crustal age domains and the evolution of the continental crust in the Mozambique Belt of Tanzania: combined Sm–Nd, Rb–Sr and Pb–Pb isotopic evidence. Journal of Petrology 39, 749–83.Google Scholar
Niu, Y & O'Hara, M. J. 2003. Origin of ocean island basalts: a new perspective from petrology, geochemistry and mineral physics considerations. Journal of Geophysical Research 108, 2209, doi: 10.1029/2002JB002048.CrossRefGoogle Scholar
Nomade, S., Knight, K. B., Beutel, E., Renne, P. R., Verati, C., Féraud, G., Marzoli, A., Youbi, N. & Bertrand, H. 2007. Chronology of the Central Atlantic Magmatic Province: implications for the Central Atlantic rifting processes and the Triassic–Jurassic biotic crisis. Palaeogeography, Palaeoclimatology, Palaeoecology 246, 326–44.Google Scholar
Piqué, A., Laville, E., Chotin, P., Chorowicz, J., Rakotondraompiana, S. & Thouin, C. 1999. L'extension à Madagascar du Néogène à l'Actuel: arguments structuraux et géophysiques. Journal of African Earth Sciences 28, 975–83.Google Scholar
Rakotondraompiana, S., Albouy, Y. & Piqué, A. 1999. Lithospheric model of the Madagascar island (western Indian Ocean): a new interpretation of the gravity data. Journal of African Earth Sciences 28, 961–73.Google Scholar
Rambolamanana, G., Suhadolc, P. & Panza, G. F. 1995. Simultaneous inversion of hypocentral parameters and structural velocity of the central region of Madagascar as a premise for the mitigation of seismic hazard in Antananarivo. International Centre for Theoretical Physics 386, Report IC/95, pp. 126.Google Scholar
Razafindrazaka, Y., Randriamananjara, T., Pique, A., Thouin, C., Laville, E., Malod, J. & Rehault, J.-P. 1999. Extension et sédimentation au Paléozoique terminal et au Mésozoïque dans le bassin de Majunga (Nerd–Ouest de Madagascar). Journal of African Earth Sciences 28, 949–59.Google Scholar
Reisberg, L., Lorand, J.-P. & Bedini, R. M. 2004. Reliability of Os model ages in pervasively metasomatized continental mantle lithosphere: a case study of Sidamo spinel peridotite xenoliths (East African Rift, Ethiopia). Chemical Geology 208, 119–40.Google Scholar
Renne, P. R., Mundil, R., Balco, G., Min, K. & Ludwig, K. R. 2010. Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochimica et Cosmochimica Acta 74, 5349–67.Google Scholar
Renne, P. R., Swisher, C. C., Deino, A. L., Karner, D. B., Owens, T. & DePaolo, D. J. 1998. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology 145, 117–52.CrossRefGoogle Scholar
Roy-Barman, M. 1993. Mesure du rapport 187Os/188Os dans le basaltes et péridotites: contribution à la systématique 187Re-187Os dans le manteau. Ph.D. thesis, University of Paris VII, Paris, France. Published thesis.Google Scholar
Rudnick, R. L. & Gao, S. 2003. Composition of the continental crust. In The Crust (ed. Rudnick, R. L.), pp. 164. Treatise on Geochemistry vol. 3. Amsterdam: Elsevier.Google Scholar
Saal, A. E., Rudnick, R. L., Ravizza, G. E. & Hart, S. R. 1998. Re–Os isotope evidence for the composition, formation and age of the lower continental crust. Nature 393, 5861.Google Scholar
Sengupta, S., Paul, D. K., de Laeter, J. R., McNaughton, N. J., Bandopadhyay, P. K., de Smeth, J. B. 1991. Mid-Archean evolution of the Eastern Indian Craton: geochemical and isotopic evidence from the Bonai pluton. Precambrian Research 49, 2337.Google Scholar
Shirey, S. B. & Walker, R. J. 1995. Carius tube digestion for low blank rhenium- osmium analysis. Analytical Chemistry 67, 2136–41.CrossRefGoogle Scholar
Shirey, S. B. & Walker, R. J. 1998. The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Review of Earth and Planetary Sciences 26, 423500.CrossRefGoogle Scholar
Simon, N. S., Carlson, R. W., Graham Pearson, D. & Davies, G. R. 2007. The origin and evolution of the Kaapvaal cratonic lithospheric mantle. Journal of Petrology 48, 589625.Google Scholar
Simon, J. I., Renne, P. R. & Mundil, R. 2008. Implications of pre-eruptive magmatic histories of zircons for U–Pb geochronology of silicic extrusions. Earth and Planetary Science Letters 266, 182–94.CrossRefGoogle Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.Google Scholar
Stern, R. J. 1994. Arc assembly and continental collision in the Neoproterozoic East African Orogeny–implications for the consolidation of Gondwana. Annual Review of Earth Planetary Sciences 22, 319–51.Google Scholar
Storey, M., Mahoney, J. J. & Saunders, A. D. 1997. Cretaceous basalts in Madagascar and the transition between plume and continental lithosphere mantle sources. In Large Igneous Provinces: Continental, Oceanic and Planetary Flood Volcanism (eds Mahoney, J. J. & Coffin, M. F.), pp. 95122. American Geophysical Union, Geophysical Monograph vol. 100. Washington, DC, USA.Google Scholar
Storey, M., Mahoney, J. J., Saunders, A. D., Duncan, R. A., Kelley, S. P. & Coffin, M. F. 1995. Timing of hot spot-related volcanism and the breakup of Madagascar and India. Science 267, 852–5.CrossRefGoogle ScholarPubMed
Todt, W., Cliff, R. A., Hanser, A. & Hofmann, A. W. 1996. Evaluation of a 202Pb-205Pb double spike for high-precision lead isotopic analyses. In Earth Processes: Reading the Isotopic Code (eds Basu, A. & Hart, S. R.), pp. 429–37. American Geophysical Union, Geophysical Monograph vol. 95. Washington, DC, USA.Google Scholar
Torsvik, T. H., Tucker, R. D., Ashwal, L. D., Eide, E. A., Rakotosolofo, N. A. & de Wit, M. J. 1998. Late Cretaceous magmatism of Madagascar: paleomagnetic evidence for a stationary hotspot. Earth and Planetary Science Letters 164, 221–32.Google Scholar
Tucker, R. D., Ashwal, L. D., Handke, M. J., Hamilton, M. A., Le Grange, M. & Rambeloson, R. A. 1999. U–Pb geochronology and isotope geochemistry of the Archean and Proterozoic rocks of north-central Madagascar. Journal of Geology 107, 135–53.Google Scholar
Völkening, J., Walczyk, T. & Heumann, K. G. 1991. Osmium isotope ratio determinations by negative thermal ionization mass spectrometry. International Journal of Mass Spectrometry and Ion Processes 105, 147–59.Google Scholar
Walker, R. J., Carlson, R. W., Shirey, S. B. & Boyd, F. R. 1989. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: implications for the chemical evolution of subcontinental mantle. Geochimica et Cosmochimica Acta 53, 1583–95.Google Scholar
Walker, R. J. & Morgan, J. W. 1989. Rhenium-osmium isotope systematics in carbonaceous chondrites. Science 243, 519–22.Google Scholar
Xu, J.-F., Suzuki, K., Xu, Y.-G., Mei, H. J. & Li, J. 2007. Os, Pb, and Nd isotope geochemistry of the Permian Emeishan continental flood basalts: insights into the source of a large igneous province. Geochimica et Cosmochimica Acta 71, 2104–19.Google Scholar
Supplementary material: File

Cucciniello supplementary material

Appendix

Download Cucciniello supplementary material(File)
File 140.7 KB