Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T04:57:33.475Z Has data issue: false hasContentIssue false

A Xenopus laevis creatine kinase isozyme (CK-III/III) expressed preferentially in larval striated muscle: cDNA sequence, developmental expression and subcellular immunolocalization

Published online by Cambridge University Press:  14 April 2009

Jacques Robert
Affiliation:
Laboratoire de Génétique, Université de Genève, 154 bis route de Malagnou, CH-1224 Chêne-Bougeries, Geneva, Switzerland
Benjamin Barandun
Affiliation:
Laboratoire de Génétique, Université de Genève, 154 bis route de Malagnou, CH-1224 Chêne-Bougeries, Geneva, Switzerland
Hans Rudolf Kobel
Affiliation:
Laboratoire de Génétique, Université de Genève, 154 bis route de Malagnou, CH-1224 Chêne-Bougeries, Geneva, Switzerland
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A cDNA containing the nearly complete coding sequence of CK-III subunit of X. laevis was isolated, sequenced and further identified by comparing the tissue distribution of CK-III/III isozyme with that of its messenger. Comparison of CK-III deduced amino acid sequence with other CK sequences published reveals its close homology to M-CK subunits. Results using both cDNA probes and monoclonal antibodies specific for CK-III subunits indicate that the appearance and the accumulation of CK-III occur in parallel with myoblast differentiation. Moreover, subcellular immuno-histolocalization shows that CK-III/III isozyme is especially concentrated on larval myofibres at the level of A-bands.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

References

Aufray, C. & Rougeon, F. (1980). Purification of mouse immunoglobulin heavy-chain messengers RNAs from total myeloma tumor RNA. European Journal of Biochemistry 107, 303314.Google Scholar
Babbitt, P. C., Kenyon, G. L., Kunzt, I. D., Cohen, F. E., Baxter, J. D., Benfield, P. A., Buskin, J. D., Gilbert, W. A., Hauschka, S. D., Hossle, J. P., Ordahl, C. P., Pearson, M. L., Perriard, J.-C., Pickering, L. A., Putney, S. D., West, B. L. & Ziven, R. A. (1986). Comparisons of creatine kinase primary structures. Journal of Protein Chemistry 5, 114.Google Scholar
Benfield, P. A., Graf, D., Korolkoff, P. N., Hobson, G. & Pearson, M. L. (1988). Isolation of four rat creatine kinase genes and identification of multiple potential promoter sequences within the rat brain creatine kinase promoter region. Gene 63, 227253.Google Scholar
Bürki, E. (1985). The expression of creatine kinase isozymes in Xenopus tropicalis, Xenopus laevis laevis, and their viable hybrid. Biochemical Genetics 23, 7387.Google Scholar
Eppenberger, H. M., Eppenberger, M. & Kaplan, O. (1967). Evolution of creatine kinase. Nature 214, 239241.Google Scholar
Fisher, S. E. & Whitt, G. S. (1978). Evolution of isozyme loci and their tissue expression. Journal of Molecular Evolution 12, 2555.Google Scholar
Fisher, S. E., Shaklee, J. B., Ferris, S. D. & Whitt, G. S. (1980). Evolution of five multilocus isozyme systems in the chordates. Genetica 52/53, 7385.Google Scholar
Haas, R. C. & Strauss, A. W. (1990). Separate nuclear genes encode sarcomere-specific and ubiquitous human mitochondrial creatine kinase isoenzymes. Journal of Biological Chemistry 265, 69216927.Google Scholar
Hsu, S. H., Raine, L. & Fanger, H. (1981). Use of avidin–biotin–peroxidase complex (ABC) in immunoperoxidase technique: a comparison between ABC and unlabelled antibody (PAP) procedure. Journal of Histochemistry and Cytochemistry 29, 577580.Google Scholar
Humason, G. L. (1979). Animal Tissue Techniques. San Francisco: Freeman.Google Scholar
Kenyon, G. L. & Reed, G. H. (1983). Creatine kinase: structure–activity relationships. Advances in Enzymology 54, 367426.Google Scholar
Klemann, S. W. & Pfohl, R. J. (1982). Creatine phosphokinase in Rana pipiens: expression in embryos, early larvae and adult tissues. Comparative Biochemistry and Physiology 73, 907914.Google Scholar
Kobel, H. R. & Du Pasquier, L. (1986). Genetics of polyploid Xenopus. Trends in Genetics 2, 310315.Google Scholar
Nieuwkoop, P. D. & Faber, J. (1967). Normal Tables of Xenopus laevis (Daudin). Amsterdam: North-Holland.Google Scholar
Otsu, N., Hirata, M., Tuboi, S. & Miyazawa, K. (1989). Immunocytochemical localization of creatine kinase M in canine myocardial cells: most creatine kinase M is distributed in the A-band. Journal of Histochemistry and Cytochemistry 37, 14651470.Google Scholar
Perriard, J.-C., Eppenberger, H. M., Hossle, J. P. & Schäfer, B. W. (1987). Genes and proteins of chicken creatine kinase isozymes: developmental regulation and functional significance. In Isozyme: Current Topics in Biological and Medical Research, vol. 14 (ed. Rattazy, M. C., Scandalios, J. G. and Whitt, G. S.), pp. 83101. New York: A. Liss.Google Scholar
Robert, J. & Kobel, H. R. (1988). Purification and characterization of cytoplasmic creatine kinase isozymes of Xenopus laevis. Biochemical Genetics 26, 543555.Google Scholar
Robert, J., Wolff, J., Jijakli, H., Graf, J.-D., Karch, F. & Kobel, H. R. (1990). Developmental expression of the creatine kinase isozyme system of Xenopus: maternallyderived CK-IV isoform persists far beyond the degradation of its maternal mRNA and into the zygotic expression period. Development 108, 507514.Google Scholar
Robert, J., Du Pasquier, L. & Kobel, H. R. Differential expression of creatine kinase isozymes during development of Xenopus laevis: an unusual heterodimeric isozyme appears at metamorphosis. Differentiation (in press) 1991.Google Scholar
Sanger, F., Nicklen, S. & Coulson, A. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A. 74, 54635467.Google Scholar
Schlegel, J., Wyss, M., Schürch, U., Schnyder, T., Quest, A., Wegmann, G., Eppenberger, H. M. & Wallimann, T. (1988). Mitochondrial creatine kinase from cardiac muscle and brain are two distinct isoenzymes but both form octameric molecules. Journal of Biological Chemistry 263, 1696316970.Google Scholar
Thomas, P. S. (1983). Hybridization of denatured RNA transferred or dotted to nitrocellulose paper. In Methods in Enzymology, vol. 100 (ed. Colowick, S. P. and Kaplan, N. O.), pp. 255266.Google Scholar
Wallimann, T. & Eppenberger, H. M. (1985). Localization and function of M-line bound creatine kinase: M-band model and creatine phosphate shuttle. In Cell and Muscle Motility, vol. 6 (ed. Shay, J. W.), pp. 239285. New York: Plenum.Google Scholar
Whitt, G. S. (1981). Evolution of isozymes and their differential regulation. In Evolution Today, Proceedings of the Second International Congress of Systematics and Evolutionary Biology (ed. Scudder, G. E. and Reveal, J. L.), pp. 271289. Vancouver: University of British Columbia.Google Scholar
Wolff, J. & Kobel, R. (1985). Creatine kinase isozymes in pipid frogs: their genetic bases, gene expressional differences and evolutionary implications. Journal of Experimental Zoology 234, 471480.Google Scholar
Zhang, H., Scholl, R., Browse, J. & Somerville, C. (1988). Double stranded DNA sequencing as a choice for DNA sequencing. Nucleic Acids Research 16, 1220.Google Scholar