Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T22:55:28.009Z Has data issue: false hasContentIssue false

Variation for X chromosome expression in mice detected by electrophoresis of phosphoglycerate kinase

Published online by Cambridge University Press:  14 April 2009

John D. West
Affiliation:
Department of Molecular Biology, Roswell Park Memorial Institute, Buffalo, New York, 14263, U.S.A.
Verne M. Chapman
Affiliation:
Department of Molecular Biology, Roswell Park Memorial Institute, Buffalo, New York, 14263, U.S.A.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The proportions of the two isozyme bands of the X-linked form of phosphoglycerate kinase (PGK-1) were compared in 16 tissues from four groups of adult heterozygous females. Little evidence was found for differences in expression of the two isozymes among tissues but there was a marked difference among the four groups of mice. The proportion of the PGK-1B enzyme was consistently lower in PGK-1AB heterozygous daughters of C3H/HeHa females than in corresponding heterozygotes with a C57BL/6Ha, DBA/2Ha or JBT/Jd mother. This difference was also observed in foetuses on the fourteenth day of gestation irrespective of whether the C3H/HeHa X chromosome was derived from the mother or the father. Sequential sampling of blood from the same heterozygous females provided no evidence for genetically determined cell selection in the adult erythropoietic tissue. The observed differences probably reflect variation at an X-chromosome controlling element locus among inbred strains of mice, similar to that described by Cattanach & Williams (1972) using X-linked morphological markers, although this has yet to be tested.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

References

REFERENCES

Beutler, E. (1969). Electrophoresis of phosphoglycerate kinase. Biochemical Genetics 3, 189195.CrossRefGoogle ScholarPubMed
Cattanach, B. M. (1975). Control of chromosome inactivation. Annual Review of Genetics 9, 118.CrossRefGoogle ScholarPubMed
Cattanach, B. M. & Isaacson, J. H. (1965). Genetic control over the inactivation of autosomal genes attached to the X chromosome. Zeitschrift für Vererbungslehre 96, 313323.Google ScholarPubMed
Cattanach, B. M. & Williams, C. E. (1972). Evidence of non-random X chromosome activity in the mouse. Genetical Research 19, 229240.CrossRefGoogle ScholarPubMed
Cooper, D. W., Johnson, P. G., Murtagh, C. E. & Vandeberg, J. L. (1975). Sex chromosome evolution and activity in mammals, particularly kangaroos. In The Eukaryote Chromosome (ed. Peacock, W. J. and Brock, R. D.), pp. 381393. Canberra: Australian National University Press.Google Scholar
Drews, U., Blecher, S. R., Owen, D. A. & Ohno, S. (1974). Genetically directed preferential X-activation seen in mice. Cell 1, 38.CrossRefGoogle Scholar
Eicher, E. M. (1970). X-autosome translocation in the mouse: total inactivation versus partial inactivation of the X chromosome. Advances in Genetics 15, 175209.CrossRefGoogle ScholarPubMed
Falconer, D. S. & Isaacson, J. H. (1972). Sex-linked variegation modified by selection in brindled mice. Genetical Research 20, 291316.CrossRefGoogle ScholarPubMed
Fialkow, P. J. (1973). Primordial cell pool size and lineage relationships of five human cell types. Annals of Human Genetics 37, 3948.CrossRefGoogle ScholarPubMed
Gandini, E., Gartler, S. M., Angioni, G., Argiolas, N., & Dell'Aqua, G. (1968). Developmental implications of multiple tissue studies in glucose-6-phosphate dehydrogenase-deficient heterozygotes. Proceedings of the National Academy of Sciences, U.S.A. 61, 945948.CrossRefGoogle ScholarPubMed
Gartler, S. M. (1976). X chromosome inactivation and selection in somatic cells. Federation Proceedings 35, 21912194.Google ScholarPubMed
Gartler, S. M. & Linder, D. (1964). Selection in mammalian mosaic cell populations. Cold Spring Harbor Symposia on Quantitative Biology 29, 253260.CrossRefGoogle ScholarPubMed
Grahn, D., Lea, R. A. & Hulesch, J. (1970). Location of an X-inactivation controller gene on the normal X chromosome of the mouse. Genetics 64, s25.Google Scholar
Grumbach, M. M., Morishima, A. & Taylor, J. H. (1963). Human sex chromosome abnormalities in relation to DNA replication and heterochromatinization. Proceedings of the National Academy of Sciences, U.S.A. 61, 945948.Google Scholar
Hamerton, J. L., Richardson, B. J., Gee, P. A., Allen, W. R. & Short, R. V. (1971). Non-random X chromosome expression in female mules and hinnies. Nature 232, 312315.CrossRefGoogle ScholarPubMed
Hook, E. B. & Brustman, L. D. (1971). Evidence for selective differences between cells with an active horse X chromosome and cells with an active donkey X chromosome in the female mule. Nature 232, 349350.CrossRefGoogle ScholarPubMed
Krzanowska, H. & Wabik, B. (1971). Selection for expression of sex-linked gene Ms (Mosaic) in heterozygous mice. Genetica Polonica 12, 537544.Google Scholar
Linder, D. & Gartler, S. M. (1965). Distribution of glucose-6-phosphate dehydrogenase electrophoretic variants in different tissues of heterozygotes. American Journal of Human Genetics 17, 212220.Google ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Lyon, M. F. (1961). Gene action in the X chromosome of the mouse (Mus mtisculus L.). Nature 190, 372373.CrossRefGoogle ScholarPubMed
Lyon, M. F. (1974). Mechanisms and evolutionary origins of variable X chromosome activity in mammals. Proceedings of the Royal Society B 187, 243268.Google ScholarPubMed
Mintz, B. & Palm, J. (1969). Gene control of hematopoiesis. I. Erythrocyte mosaicism and permanent immunological tolerance in allophenic mice. Journal of Experimental Medicine 129, 10131027.CrossRefGoogle ScholarPubMed
Nance, W. E. (1964). Genetic tests with a sex-linked marker: glucose-6-phosphate dehydrogenase. Cold Spring Harbor Symposia on Quantitative Biology 29, 415425.CrossRefGoogle ScholarPubMed
Nesbitt, M. N. (1971). X chromosome inactivation mosaicism in the mouse. Developmental Biology 26, 252263.CrossRefGoogle Scholar
Nielsen, J. T. & Chapman, V. M. (1977). Electrophoretic variation for sex-linked phosphoglycerate kinase (PGK-1) in the mouse. Genetics 87, 319325.CrossRefGoogle Scholar
Nyhan, W. L., Bakay, B., Connor, J. D., Marks, J. F. & Keel, D. K. (1970). Hemizygous expression of glucose-6-phosphate dehydrogenase in erythrocytes of heterozygotes of the Lesch-Nyhan syndrome. Proceedings of the National Academy of Sciences, U.S.A. 65, 214218.CrossRefGoogle ScholarPubMed
Ohno, S., Christian, L., Attardi, B. J. & Kan, J. (1973). Modified expression of the Testicular Feminization (Tfm) gene of the mouse by a ‘controlling element gene’. Nature New Biology 245, 9293.CrossRefGoogle Scholar
Race, R. R. & Sanger, R. (1968). Blood groups in twinning, chimerism and dispermy. In Blood Groups in Man, 5th ed., chap. 23, pp. 467494. Oxford and Edinburgh: Blackwell Scientific Publications.Google Scholar
Rattazzi, M. C. & Cohen, M. M. (1972). Further proof of genetic inactivation of the X chromosome in the female mule. Nature 237, 393395.CrossRefGoogle ScholarPubMed
Ropers, H.-H., Wienker, T. F., Grimm, T., Schroetter, K. & Bender, K. (1977). Evidence for preferential X chromosome inactivation in a family with Fabry disease. American Journal of Human Genetics 29, 361370.Google Scholar
Russell, L. B. (1964). Another look at the single-active-X hypothesis. Transactions of the New York Academy of Sciences, series II, 26, 726736.CrossRefGoogle Scholar
Stone, W. H., Friedman, J. & Fregin, A. (1964). Possible somatic cell mating in twin cattle with erythrocyte mosaicism. Proceedings of the National Academy of Sciences, U.S.A. 51, 10361044.CrossRefGoogle ScholarPubMed
Takagi, N. (1976). Stability of X chromosome differentiation in mouse embryos. Reversal may not be responsible for the extreme X-inactivation mosaicism in extraembryonic membranes. Human Genetics 34, 207211.CrossRefGoogle Scholar
Takagi, N. & Sasaki, M. (1975). Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256, 640642.CrossRefGoogle ScholarPubMed
Tucker, E. M., Moor, R. M. & Rowson, L. E. A. (1974). Tetraparental sheep chimaeras induced by blastomere transplantation. Changes in blood type with age. Immunology 26, 613621.Google ScholarPubMed
Wake, N., Takagi, N. & Sasaki, M. (1976). Non-random inactivation of X chromosome in the rat yolk sac. Nature 262, 580581.CrossRefGoogle ScholarPubMed
West, J. D. (1977). Red blood cell selection in chimeric mice. Experimental Hematology 5, 17.Google ScholarPubMed
West, J. D., Frels, W. I., Chapman, V. M. & Papaioannou, V. E. (1977). Preferential expression of the maternally derived X chromosome in the mouse yolk sac. Cell 12, 873882.CrossRefGoogle ScholarPubMed
Yoshida, A. & Watanabe, S. (1972). Human phosphoglycerate kinase. I. Crystallization and characterization of normal enzyme. Journal of Biological Chemistry 247, 440445.CrossRefGoogle ScholarPubMed