Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-06T01:18:41.128Z Has data issue: false hasContentIssue false

Trimethoprim resistance controlled by a combination of plasmid and chromosomal genes

Published online by Cambridge University Press:  14 April 2009

S. G. B. Amyes
Affiliation:
Microbiology Section, Department of Pharmaceutics, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX
J. T. Smith
Affiliation:
Microbiology Section, Department of Pharmaceutics, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

R388s is a mutant of the R factor, R388. Unlike its parent R388s does not confer trimethoprim resistance, though it does confer sulphonamide resistance and the ability to transfer. It is shown that when bacteria harbour R388s mutations to trimethoprim resistance occurred at a high frequency (3·5 × 10−4), whereas such mutations never occurred when the host lacked the R factor. Bacteria harbouring R388s did not mutate to resistance to any other antibiotics at a detectable frequency.

The expression of trimethoprim resistance in bacteria possessing R388s appears to require two genes, one located on the R factor and the other situated presumably on the chromosome. The mechanism of trimethoprim resistance in these bacteria is probably due to reduced permeability and is thus quite unlike the insusceptible target site mechanism of the parent R factor, R388.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

References

REFERENCES

Amyes, S. G. B. (1974). The susceptibility of Gram-negative bacteria to antifolate chemotherapeutic agents. Ph.D. thesis, University of London.Google Scholar
Amyes, S. G. B. & Smith, J. T. (1974 a). R-factor trimethoprim resistance mechanism: An insusceptible target site. Biochemical and Biophysical Research Communications 58, 412418.CrossRefGoogle ScholarPubMed
Amyes, S. G. B. & Smith, J. T. (1974 b). Trimethoprim sensitivity testing and thymineless mutants. Journal of Medical Microbiology 7, 143153.CrossRefGoogle ScholarPubMed
Amyes, S. G. B. & Smith, J. T. (1975). R-factor conferred ability to mutate to trimethoprim resistance. Journal of Pharmacy and Pharmacology 27, 44P.Google ScholarPubMed
Amyes, S. G. B. & Smith, J. T. (1976). The purification and properties of the trimethoprim resistant dihydrofolate reductase mediated by the R-factor, R388. European Journal of Biochemistry 61, 597603.CrossRefGoogle ScholarPubMed
Barth, P. T., Datta, N., Hedges, R. W. & Grinter, N. J. (1976). Transposition of a deoxyribonucleic acid sequence encoding trimethoprim and streptomycin resistances from R483 to other replicons. Journal of Bacteriology 125, 800810.CrossRefGoogle ScholarPubMed
Berg, D. E., Davies, J., Allet, B. & Rochaix, J.-D. (1975). Transposition of R-factor genes to bacteriophage γ. Proceedings of the National Academy of Sciences, U.S.A. 72, 36283632.CrossRefGoogle Scholar
Clowes, R. C. & Rowley, D. (1954). Some observations on linkage effects in genetic recombination in Escherichia coli K12. Journal of General Microbiology 11, 250260.CrossRefGoogle Scholar
Datta, N. & Hedges, R. W. (1972). Trimethoprim resistance conferred by W-plasmids in Enterobacteriacae. Journal of General Microbiology 72, 349355.CrossRefGoogle Scholar
Davis, B. D. & Mingioli, E. S. (1950). Mutants of Escherichia coli requiring methionine or vitamin B12. Journal of Bacteriology 60, 1728.CrossRefGoogle ScholarPubMed
Foster, T. J. (1976). R factor-mediated tetracycline resistance in Escherichia coli K12. Dominance of some tetracycline sensitive mutants and relief of dominance by deletion. Molecular and General Genetics 143, 339344.CrossRefGoogle ScholarPubMed
Ginoza, H. S. & Painter, R. B. (1964). Genetic recombination between the resistance transfer factor and the chromosome of Escherichia coli. Journal of Bacteriology 87, 13391345.CrossRefGoogle Scholar
Gottesman, M. M. & Rosner, J. L. (1975). Acquisition of a determinant for chloramphenicol resistance by coliphage lambda. Proceedings of the National Academy of Sciences, U.S.A., 72, 50415045.CrossRefGoogle ScholarPubMed
Greaves, C. M. (1972). R-factor derivatives conferring raised levels of antibiotic resistance in bacteria. Ph.D. thesis, University of London.Google Scholar
Gundersen, W. B. (1963). New type of streptomycin resistance resulting from the action of the episome-like mutator factor in Escherichia coli. Journal of Bacteriology 86, 510516.CrossRefGoogle Scholar
Gundersen, W. B. (1965). Transduction of the mu-factor in Escherichia coli. Acta Pathologica Microbiologica Scandinavica 65, 621626.CrossRefGoogle ScholarPubMed
Hedges, R. W., Datta, N., Kontamichalou, P. & Smith, J. T. (1974). Molecular specificities of R-factor-determined β-lactamases: Correlation with plasmid compatibility. Journal of Bacteriology 117, 5662.CrossRefGoogle ScholarPubMed
Hedges, R. W. & Jacob, A. E. (1974). Transposition of Ampicillin resistance from RP4 to other replicons. Molecular and General Genetics 132, 3140.CrossRefGoogle ScholarPubMed
Heffron, F., Rubens, C. & Falkow, S. (1975). Translocation of a plasmid DNA sequence which mediates ampicillin resistance: Molecular nature and specificity of insertion. Proceedings of the National Academy of Sciences, U.S.A. 72, 36233627.CrossRefGoogle ScholarPubMed
Hitchings, G. H., Burchall, J. J. & Ferone, R. (1966). The comparative enzymology of dihydrofolate reductase and the design of chemotherapeutic agents. 16th Symposium for the Society of General Microbiology pp. 294300.Google Scholar
Hitchings, G. H. & Bushby, S. R. M. (1961). 5-Benzyl-2,4-diaminopyrimidines, a new class of systemic antibacterial agents. Abstracts from 5th International Congress of Biochemistry, Moscow, p. 165.Google Scholar
Kono, M. & O'Hara, K. (1976). Mechanism of chloramphenicol-resistance mediated by kR 102 factor in Pseudomonas aeruginosa. Journal of Antibiotics 24, 176180.CrossRefGoogle Scholar
Lieve, L. (1965). Release of lipopolysaccharide by EDTA treatment of E. coli. Biochemical and Biophysical Research Communications 21, 290296.CrossRefGoogle Scholar
McCann, J., Spingarn, N. E., Kobori, J. & Ames, B. N. (1975). Detection of carcinogens as mutagens: Bacterial tester strains with R-factor plasmids. Proceedings of the National Academy of Sciences, U.S.A. 72, 979983.CrossRefGoogle ScholarPubMed
Pearce, L. E. & Meynell, E. (1968). Mutation to high level streptomycin resistance in R+ bacteria. Journal of General Microbiology 50, 173176.CrossRefGoogle ScholarPubMed
Reif, H. J. & Saedler, H. (1975). ISI is involved in deletion formation in the gal region of E. coli K 12. Molecular and General Genetics 137, 1728.CrossRefGoogle Scholar
Roberts, L. M. & Reeve, E. C. R. (1970). Two mutations giving low-level streptomycin resistance in Escherichia coli K12. Genetical Research 16, 359365.CrossRefGoogle Scholar
Smith, J. T. (1967). Production of thymineless mutants in Gram-negative bacteria (Aero-bacter, Proteus). Journal of General Microbiology 47, 131137.CrossRefGoogle Scholar
Smith, J. T. (1969). R-factor gene expression in Gram-negative bacteria. Journal of General Microbiology 55, 109120.CrossRefGoogle ScholarPubMed
Smith, J. T. & Wyatt, J. M. (1974). Relation of R-factor and chromosomal β-lactamase with the periplasmic space. Journal of Bacteriology 117, 931939.CrossRefGoogle ScholarPubMed
Wood, T. H. (1968). Effects of temperature, agitation and donor strain on chromosomal transfer in Escherichia coli K12. Journal of Bacteriology 96, 20772084.CrossRefGoogle Scholar