Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T12:33:59.879Z Has data issue: false hasContentIssue false

A transposable genetic element associated with positive regulation of G6PD gene expression in Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

Masanobu Itoh
Affiliation:
Department of Zoology, Faculty of Science, Hokkaido University, Sapporo 060, Japan
Mari Iwabuchi
Affiliation:
Department of Zoology, Faculty of Science, Hokkaido University, Sapporo 060, Japan
Naoki Yorimoto
Affiliation:
Department of Zoology, Faculty of Science, Hokkaido University, Sapporo 060, Japan
Samuel H. Hori*
Affiliation:
Department of Zoology, Faculty of Science, Hokkaido University, Sapporo 060, Japan
*
Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The DNA structures around the G6PD coding region in three high-G6PD activity mutants and their low-activity revertants of Drosophila melanogaster were analysed by Southern blot using a cloned G6PD gene as a probe. As a result, two kinds of insertion sequences were found; one was present just 5′ to exon I (Ins1), and the other within the intron (Ins2). The Ins1 sequence was 3·5 Kb in two mutants and 2·9 Kb in one mutant. In both cases, it consisted of a core sequence either 1·2 or 0·6 Kb long flanked by terminal repeats. On the other hand, low-activity revertants possessed either a defective Ins1 or no Ins1. The Ins2 sequence was found in all mutants and revertants, but not in Canton S. Although a recombinant phage carrying the DNA fragment spanning the entire Ins1 has not been obtained, sequencing data of the clone containing only the terminal repeats demonstrated that the repeats are defective P elements. Comparison of the genomic DNA structures of mutants and revertants suggested that the element responsible for the positive regulation of the G6PD gene in the mutants would probably be the core sequence, but not the flanking defective P elements. It was also conjectured that the 1·2 Kb core sequence might be composed of two identical elements, which might transpose independently.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Bellett, A. J. D., Busse, H. G. & Baldwin, R. L. (1971). Tandem genetic duplications in a derivative of phage lambda. In Bacteriophage Lambda (ed. Hershey, A. D.), pp. 501513. New York: Cold Spring Harbor Laboratory.Google Scholar
Black, D. M., Jackson, M. S., Kidwell, M. G. & Dover, G. A. (1987). KP element repress P-induced hybrid dysgenesis in Drosophila melanogaster. EM BO Journal 6, 41254135.Google ScholarPubMed
Bregliano, J. C. & Kidwell, M. G. (1983). Hybrid dysgenesis determinants. In Mobile Genetic Elements (ed. Shapiro, J. A.), pp. 363410. New York: Academic Press.Google Scholar
Bucheton, A., Paro, R., Sang, H. M., Pelisson, A. & Finnegan, D. J. (1984). The molecular basis of I-R hybrid dysgenesis in Drosophila melanogaster: identification, cloning, and properties of the I factor. Cell 38, 153163.CrossRefGoogle ScholarPubMed
Cameron, J. R., Loh, E. Y. & Davis, R. W. (1979). Evidence for transposition of dispersed repetitive DNA families in yeast. Cell 16, 739751.CrossRefGoogle ScholarPubMed
Clare, J. & Farabaugh, P. (1985). Nucleotide sequence of a yeast Ty element: evidence for an unusual mechanism of gene expression. Proceedings of the National Academy of Sciences, USA 82, 28292833.CrossRefGoogle ScholarPubMed
Collins, M. & Rubin, G. M. (1982). Structure of the Drosophila mutable allele, white-crimson, and its white-ivory and wild-type derivatives. Cell 30, 7179.CrossRefGoogle ScholarPubMed
Eibel, H., Gafner, J., Stotz, A. & Philippsen, P. (1980). Characterization of the yeast mobile element Tyl. Cold Spring Harbor Symposia on Quantitative Biology 45, 609617.CrossRefGoogle Scholar
Elder, R. T., Loh, E. Y. & Davis, R. W. (1983). RNA from the yeast transposable element Tyl has both ends in the direct repeats, a structure similar to retrovirus RNA. Proceedings of the National Academy of Sciences, USA 80, 24322436.CrossRefGoogle Scholar
Engels, W. R. (1983). The P family of transposable elements in Drosophila. Annual Review of Genetics 17, 315344.CrossRefGoogle Scholar
Fink, G. R., Boeke, J. D. & Garfinkel, D. J. (1986). The mechanism and consequences of retrotransposition. Trends in Genetics 2, 118123.CrossRefGoogle Scholar
Frischauf, A. M., Lehrach, H., Poustka, A. & Murray, N. (1983). Lambda replacement vectors carrying polylinker sequences. Journal of Molecular Biology 170, 827842.CrossRefGoogle ScholarPubMed
Ganguly, R., Ganguly, N. & Manning, J. E. (1985). Isolation and characterization of the glucose-6-phosphate de-hydrogenase gene of Drosophila melanogaster. Gene 35 91101.CrossRefGoogle Scholar
Hauber, J., Nelböck-Hochstetter, P. & Feldmann, H. (1985). Nucleotide sequence and characteristics of a Ty element from yeast. Nucleic Acids Research 13, 27452758.CrossRefGoogle ScholarPubMed
Hori, S. H., Akasaka, M., Ito, H., Hanaoka, T., Tanda, S., Ohtsuka, E., Miura, K., Takahashi, T. & Tang, J. J. N. (1985). Cloning of the glucose-6-phosphate dehydrogenase gene of Drosophila melanogaster using 17-base oligonucleotide mixtures as probes. Japanese Journal of Genetics 60, 455463.Google Scholar
Hori, S. H., Tanda, S., Fukazawa, K. & Hanaoka, T. (1982). Further studies on the modifier gene system regulating activities of X-linked enzymes in Drosophila melanogaster. Japanese Journal of Genetics 57, 535550.Google Scholar
Itoh, M. & Hori, S. H. (1985). An X-linked genetic factor that affects the activity of glucose-6-phosphate dehydrogenase (G6PD) in Drosophila melanogaster: effect of cytoplasm on its loss from the X chromosome. Japanese Journal of Genetics 60, 441453.Google Scholar
Iwabuchi, M., Hori, S. H. & Yorimoto, N. (1986). X-linked mutations that give rise to overproduction of glucose-6-phosphate dehydrogenase in Drosophila melanogaster. Biochemical Genetics 24 319327.CrossRefGoogle ScholarPubMed
Kidwell, M. G. (1979). Hybrid dysgenesis in Drosophila melanogaster: the relationship between the P-M and I-R interaction systems. Genetical Research 33, 205217.Google Scholar
Kidwell, M. G., Kidwell, J. F. & Sved, J. A. (1977). Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination. Genetics 86, 813833CrossRefGoogle ScholarPubMed
Levis, R., Collins, M. & Rubin, G. M. (1982). FB elements are the common basis for the instability of the wdzl and wc Drosophila mutations. Cell 30, 551565.CrossRefGoogle ScholarPubMed
Levis, R. & Rubin, G. M. (1982). The unstable wdzl mutation of Drosophila is caused by a 13 kilobase insertion that is imprecisely excised in phenotypic revertants. Cell 30, 543550.CrossRefGoogle ScholarPubMed
Lindsley, D. L. & Grell, E. H. (1968). Genetic Variations of Drosophila melanogaster. Carnegie Institution of Washington Publication no. 627.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.Google Scholar
Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning, a Laboratory Manual. New York: Cold Spring Harbor Laboratory.Google Scholar
Maniatis, T., Hardison, R. C., Lacy, E., Lauer, J., O'Connell, C. & Quon, D. (1978). The isolation of structural genes from libraries of eucaryotic DNA. Cell 15, 687701.CrossRefGoogle ScholarPubMed
Martini, G., Toniolo, D., Vulliamy, T., Luzzatto, L., Dono, R., Viglietto, G., Paonessa, G., D'Urso, M. & Persico, M. G. (1986). Structural analysis of the X-linked gene encoding human glucose-6-phosphate dehydrogenase. EMBO Journals, 18491855.Google ScholarPubMed
Merriam, J. R. (1968). FM7: first multiple seven. Drosophila Information Service, 43, 64.Google Scholar
Merriam, J. R. (1969). FM7: a ‘new’ first chromosome balancer. Drosophila Information Service 44, 101.Google Scholar
O'Hare, K. (1985). The mechanism and control of P element transposition in Drosophila melanogaster. Trends in Genetics 1, 250254.Google Scholar
O'Hare, K. & Rubin, G. M. (1983). Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34, 2535.Google Scholar
Paro, R., Goldberg, M. L. & Gehring, W. J. (1983). Molecular analysis of large transposable elements carrying the white locus of Drosophila melanogaster. EMBO Journal 2, 853860.CrossRefGoogle ScholarPubMed
Reed, K. C. & Mann, D. A. (1985). Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Research 13 72077221.CrossRefGoogle ScholarPubMed
Roeder, G. S. & Fink, G. R. (1983). Transposable elements in yeast. In Mobile Genetic Elements (ed. Shapiro, J. A.), pp. 299328. New York: Academic Press.Google Scholar
Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H. & Roe, B. A. (1980). Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. Journal of Molecular Biology 143, 161178.CrossRefGoogle ScholarPubMed
Simmons, M. J. & Karess, R. E. (1985). Molecular and population biology of hybrid dysgenesis. Drosophila Information Service 61, 27.Google Scholar
Spradling, A. C. & Rubin, G. M. (1981). Drosophila genome organization: conserved and dynamic aspects. Annual Review of Genetics 15, 219264.CrossRefGoogle ScholarPubMed
Tanda, S. & Hori, S. H. (1983 a). Regulation of glucose-6-phosphate dehydrogenase activity by a presumptive extrachromosomal factor in Drosophila melanogaster. Japanese Journal of Genetics 58, 531537.Google Scholar
Tanda, S. & Hori, S. H. (1983 b). Modifier gene that affects glucose-6-phosphate dehydrogenase activity in Drosophila melanogaster. Japanese Journal of Genetics 58, 591606.Google Scholar
Warmington, J. R., Waring, R. B., Newlon, C. S., Indge, K. J. & Oliver, S. G. (1985). Nucleotide sequence characterization of Ty 1–17, a class I transposon from yeast. Nucleic Acids Research 13, 66796693.CrossRefGoogle Scholar
Williamson, V. M. (1983). Transposable elements in yeast. International Review of Cytology 83, 125.Google Scholar
Yanisch-Perron, C., Vieira, J. & Messing, J. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103119.CrossRefGoogle ScholarPubMed
Young, M. W. (1979). Middle repetitive DNA: a fluid component of the Drosophila genome. Proceedings of the National Academy of Sciences, USA, 78, 62746278.CrossRefGoogle Scholar