Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T08:36:28.254Z Has data issue: false hasContentIssue false

Transformation in Escherichia coli: studies on the nature of donor DNA after uptake and integration

Published online by Cambridge University Press:  14 April 2009

W. P. M. Hoekstra
Affiliation:
Department of Molecular Cell Biology, State University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
H. E. N. Bergmans
Affiliation:
Department of Molecular Cell Biology, State University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
E. M. Zuidweg
Affiliation:
Department of Molecular Cell Biology, State University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Chromosomal E. coli DNA appears to be sensitive towards in vivo DNA restriction when transformed to a restrictive E. coli recipient. It is therefore concluded that transforming chromosomal donor DNA is present in a double-stranded form immediately after uptake.

Genetic analysis of E. coli transformants, obtained with UV-irradiated donor DNA under conditions that exclude photorepair, show, especially in a uvrB recipient, loss of donor DNA information compared with the situation where DNA was not subjected to UV-irradiation. Similar conclusions were arrived at after genetic analysis of transductants obtained with UV-irradiated particles of the generalized transducing phage P1. The processing in E. coli of DNA after P1 transduction is thus similar to that of transforming DNA. The observations are discussed and a possible explanation based on single-stranded DNA integration is presented in detail.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

References

REFERENCES

Boyer, H. (1964). Genetic control of restriction and modification in Escherichia coli. Journal of Bacteriology 88, 16521660.CrossRefGoogle ScholarPubMed
Boyer, H. (1971). DNA restriction and modification mechanisms in bacteria. Annual Review of Microbiology 25, 153176.Google Scholar
Bron, S. & Venema, G. (1972). Ultraviolet inactivation and excision-repair in Bacillus subtilis. IV. Integration and repair of ultraviolet-inactivated transforming DNA. Mutation Research 15, 395409.CrossRefGoogle ScholarPubMed
Cosloy, Sh.D. & Oishi, M. (1973). The nature of the transformation process in Escherichia coli K12. Molecular and General Genetics 124, 110.Google Scholar
Ebel-Tsipis, J., Botstein, D. & Fox, M. S. (1972). Generalized transduction by phage P22 in Salmonella typhimurium. I. Molecular origin of transducing DNA. Journal of Molecular Biology 71, 433448.Google Scholar
Fox, M. S. & Allen, M. K. (1964). On the mechanism of deoxyribonucleate integration in Pneumococcal transformation. Proceedings of the National Academy of Sciences U.S.A. 52, 412419.CrossRefGoogle ScholarPubMed
Guest, J. R. (1969). Biochemical and genetic studies with nitrate reductase C gene mutant of Escherichia coli. Molecular and General Genetics 105, 285297.CrossRefGoogle ScholarPubMed
Gurney, T., Fox, M. S. (1968). Physical and genetic hybrids formed in bacterial transformation. Journal of Molecular Biology 32, 83100.Google Scholar
Hoekstra, W. P. M. & de Haan, P. G. (1965). The location of the restriction locus for λ.K in Escherichia coli B. Mutation Research 2, 204212.Google Scholar
Hoekstra, W. P. M., de Haan, P. G., Bergmans, J. E. N. & Zuidweg, E. M. (1976). Transformation in E. coli K12: relation of linkage to distance between markers. Molecular and General Genetics 145, 109110.CrossRefGoogle Scholar
Hoekstra, W. P. M., Zuidweg, E. M. & Kipp, J. B. A. (1973). Tetracycline resistance in Escherichia coli: a genetic contribution. Antonie van Leeuwenhoek 39, 1120.CrossRefGoogle ScholarPubMed
Linn, S. & Arber, W. (1968). Host specificity of DNA produced by Escherichia coli. X. In vitro restriction of phage fd replicative form. Proceedings of the National Academy of Sciences U.S.A. 59, 13001306.Google Scholar
Mahajan, S. K. & Datta, A. R. (1979). Mechanism of recombination by the RecBC and RecF pathways following conjugation in Escherichia coli K12. Molecular and General Genetics 169, 6778.Google Scholar
Meselson, M. & Yuan, R. (1968). DNA restriction enzyme from E. coli. Nature 217, 11101114.CrossRefGoogle ScholarPubMed
Notani, N. & Goodgal, S. H. (1966). On the nature of recombinants formed during transformation in Haemophilus influenzae. Journal of General Physiology 49 (part 2), 197209.CrossRefGoogle Scholar
Pittard, J. (1964). Effect of phage-controlled restriction on genetic linkage in bacterial crosses. Journal of Bacteriology 87, 12561257.CrossRefGoogle ScholarPubMed
Reijnders, B., Hoekstra, W. P. M., Bergmans, J. E. N. & van Die, I. M. (1979). Transformation in Escherichia coli. In Transformation 1978 (ed. Glover, S. W. and Butler, L. O.), Oxford: Cotswold Press.Google Scholar
Rosner, J. L., Kass, L. R. & Yarmolinsky, M. B. (1968). Parallel behaviour of F and P1 in causing induction of lysogenic bacteria. Cold Spring Harbor Symposium on Quantitative Biology 33, 785789.Google Scholar
Rupp, W. D. & Howabd-Flanders, P. (1968). Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. Journal of Molecular Biology 31, 291304.CrossRefGoogle Scholar
Vapnek, D. & Rupp, W. D. (1970) Asymmetric segregation of the complementary sex-factor DNA strands during conjugation in Escherichia coli. Journal of Molecular Biology 53, 287303.CrossRefGoogle ScholarPubMed
Wackernagel, W. (1973). Genetic transformation in E. coli: the inhibitory role of the recBC DNase. Biochemical and Biophysical Research Communications 51, 306311.CrossRefGoogle Scholar
Willetts, N. S., Clark, A. J. & Low, B. (1969). Genetic location of certain mutations conferring recombination deficiency in Escherichia coli. Journal of Bacteriology 97, 244249.CrossRefGoogle ScholarPubMed