Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T07:48:43.807Z Has data issue: false hasContentIssue false

The substructural organization of the chromosome core (scaffold) in meiotic chromosomes of Trilophidia annulata

Published online by Cambridge University Press:  14 April 2009

Jian Zhao
Affiliation:
Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China. Institute of Hematology, Harbin First Hospital, Harbin 150010, China
Shaobo Jin*
Affiliation:
Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
Shui Hao
Affiliation:
Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The substructural organization of chromosome cores or nonhistone proteins was studied within intact metaphase chromosomes at the second meiotic division in the grasshopper Trilophidia annulata by silver staining as well as light microscopy and whole mount electron microscopy of squash chromosomes. Our results revealed that the metaphase II chromosome contains a longitudinal, helical coiling core structure. Probably the two last organizational levels of the core packaging are achieved by helical coiling. The core structure retains the morphological characteristics of the original metaphase chromosome, surrounded by a halo of dispersed materials, which may be composed mainly of nonhistone proteins. The kinetochore is found to be connected with the chromosome core. The present findings combined with our previous observations on the helical structure of metaphase II chromosomes suggest that the folding path of the internal core structure in metaphase chromosomes is consistent with the final helical arrangement of the chromosome itself. These observations also imply that in condensed metaphase chromosomes nonhistone protein may form a compact network structure with helical appearance, which extends throughout the entire chromosome.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

References

Adolph, K. W., Cheng, S. M. & Laemmli, U. K. (1977 a). Role of nonhistone proteins in metaphase chromosome structure. Cell 12, 805816.CrossRefGoogle ScholarPubMed
Adolph, K. W., Cheng, S. M., Paulson, J. R. & Laemmli, U. K. (1977 b). Isolation of a protein scaffold from mitotic HeLa cell chromosomes. Proceedings of the National Academy of Sciences of the United States of America 74, 49374941.CrossRefGoogle ScholarPubMed
Bak, A. L., Zeuthen, J. & Crick, F. H. C. (1977). Higher order structure of human mitotic chromosomes. Proceedings of the National Academy of Sciences of the United States of America 74, 15951599.CrossRefGoogle ScholarPubMed
Boy, de la Tour & Laemmli, U. K. (1988). The metaphase scaffold is helical handedness. Cell 55, 937944.Google Scholar
Earnshaw, W. C. & Laemmli, U. K. (1983). Architecture of metaphase chromosomes and chromosome scaffolds. Journal of Cell Biology 96, 8493.CrossRefGoogle ScholarPubMed
Earnshaw, W. C. & Laemmli, U. K. (1984). Silver staining the chromosome scaffold. Chromosoma 89, 186192.CrossRefGoogle ScholarPubMed
Haapala, O. & Nokkala, S. (1982). Structure of human metaphase chromosomes. Hereditas 96, 215228.CrossRefGoogle ScholarPubMed
Hadlaczky, G. (1985). Structure of metaphase chromosomes of plants. International Review of Cytology 94, 5775.CrossRefGoogle Scholar
Hadlaczky, G., Praznovszky, T. & Bistray, G. (1982). Structure of isolated protein-depleted chromosomes of plants. Chromosoma 86, 643659.CrossRefGoogle Scholar
Hadlaczky, G., Sumner, A. T. & Ross, A. (1981). Proteindepleted chromosomes. I. Structure of isolated proteindepleted chromosomes. Chromosoma 81, 537555.CrossRefGoogle ScholarPubMed
Hao, S., Jiao, M. & Huang, B. (1990). Chromosome organization revealed upon the decondensation of telophase chromosomes in Allium. Chromosoma 99, 371378.CrossRefGoogle Scholar
Howell, W. M. & Black, D. A. (1980). Controlled silver staining of nucleolar organizer regions with a protective colloidal developer: a 1-step method. Experientia 36, 10141015.CrossRefGoogle Scholar
Howell, W. M. & Hsu, T. C. (1979). Chromosome core structure revealed by silver staining. Chromosoma 73, 6166.CrossRefGoogle ScholarPubMed
Marsden, M. P. F. & Laemmli, U. K. (1979). Metaphase chromosome structure: evidence for a radial loop model. Cell 17, 849858.CrossRefGoogle ScholarPubMed
Nokkala, S. & Nokkala, C. (1986). Coiled internal structure of chromonemal within chromosomes suggesting hierarchical coil model for chromosome structure. Hereditas 104, 2940.CrossRefGoogle Scholar
Paulson, J. R. (1989). Scaffold morphology in histonedepleted HeLa metaphase chromosomes. Chromosoma 97, 289295.CrossRefGoogle ScholarPubMed
Paulson, J. R. & Laemmli, U. K. (1977). The structure of histone-depleted metaphase chromosomes. Cell 12, 817828.CrossRefGoogle ScholarPubMed
Rattner, J. B. & Lin, C. C. (1985). Radial loops and helical coils coexist in metaphase chromosomes. Cell42,291–296.CrossRefGoogle ScholarPubMed
Ris, H. & Korenberg, J. (1979). Chromosome structure and levels of organization. In Cell Biology, Vol 2 (ed. Presont, D. M. and Galdstein, L.), pp. 268361. New York: Academic Press.Google Scholar
Rufas, J. S., Gimenez-Martin, G. & Esponda, P. (1982). Presence of a chromatid core in mitotic and meiotic chromosomes of grasshoppers. Cell Biology International Reports 6, 261267.CrossRefGoogle ScholarPubMed
Satya-prakash, K. L., Hsu, T. C. & Pathak, S. (1980). Behaviour of the chromosome core in mitosis and meiosis. Chromosoma 81, 18.CrossRefGoogle ScholarPubMed
Sentis, C., Roctriguez-Campos, A., Slockert, J. C. & Fernandez-Piqueras, J. (1984). Morphology of the axial structures in the neo-XY sex bivalent of Pycnogaster cucullata (Orthoptera) by silver impregnation. Chromosoma 90, 317321.CrossRefGoogle Scholar
Stack, S. M. (1991). Staining plant cells with silver. II. Chromosome cores. Genome 34, 900908.CrossRefGoogle Scholar
Taniguchi, T. & Takayaman, S. (1986). Higher-order structure of metaphase chromosomes: evidence for a multiple coiling model. Chromosoma 93, 511514.CrossRefGoogle Scholar
Zhao, J., Hao, S. & Xing, M. (1991). The fine structure of the mitotic chromosome core (scaffold) of Trilophidia annulata. Chromosoma 100, 322329.CrossRefGoogle Scholar
Zhao, J., He, M.-Y. & Hao, S. (1990). Spiral structure and chromosome core in meiotic chromosomes of the grasshopper Angaracris rhodopa. Acta Experimentali-Biologica Sinica 22, 917.Google Scholar
Zhao, J., He, M.-Y. & Hao, S. (1992). Formation of chromatid cores and synaptonemal complexes in meiotic chromosomes of Angaracris rhodopa. Chinese Journal of Genetics 19, 1319.Google Scholar