Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-15T15:08:12.494Z Has data issue: false hasContentIssue false

Studies of esterase 6 in Drosophila melanogaster: XIV. Variation of esterase 6 levels controlled by unlinked genes in natural populations

Published online by Cambridge University Press:  14 April 2009

Craig S. Tepper
Affiliation:
Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A.
Anne L. Terry
Affiliation:
Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A.
James E. Holmes
Affiliation:
Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A.
Rollin C. Richmond
Affiliation:
Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The esterase 6 (Est-6) locus in Drosophila melanogaster is located on the third chromosome and is the structural gene for a carboxylesterase (E.C.3.1.1.1) and is polymorphic for two major electromorphs (slow and fast). Isogenic lines containing X chromosomes extracted from natural populations and substituted into a common genetic background were used to detect unlinked factors that affect the activity of the Est-6 locus. Twofold activity differences of esterase 6 (EST 6) were found among males from these derived lines, which differ only in their X chromosome. These unlinked activity modifiers identify possible regulatory elements. Immunoelectrophoresis was used to estimate quantitatively the levels of specific cross-reacting material in the derived lines. The results show that the variation in activity is due to differences in the amount of EST 6 present. The data are consistent with the hypothesis that there is at least one locus on the X chromosome that regulates the synthesis of EST 6 and that this regulatory locus may be polymorphic in natural populations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

References

REFERENCES

Aronshtam, A. A. & Kuzin, B. A. (1974). Investigation of the activity of esterase 6 in ontogenesis in Drosophila melanogaster and Drosophila simulans. Zhurnal Obshei Biologii (USSR) 35, 926933 (in Russian).Google Scholar
Bliss, C. I. (1970). Statistics in Biology, vol. 2. New York: McGraw-Hill.Google Scholar
Carson, H. L. (1975). The genetics of speciation at the diploid level. American Naturalist 109, 8392.CrossRefGoogle Scholar
Cavener, D. R. & Clegg, M. T. (1981). Temporal stability of allozyme frequencies in a natural population of Drosophila melanogaster. Genetics 98, 613623.CrossRefGoogle Scholar
Cochrane, B. & Richmond, R. C. (1979). Studies of esterase 6 in Drosophila melanogaster. I. The genetics of a posttranslational modification. Biochemical Genetics 17, 167183.CrossRefGoogle ScholarPubMed
Engels, W. R. (1980). Hybrid dysgenesis in Drosophila and the stochastic loss hypothesis. Cold Spring Harbor Symposia on Quantitative Biology 20, 561565.Google Scholar
Engels, W. R. (1979). Hybrid dysgenesis in Drosophila melanogaster: rules of inheritance of female sterility. Genetical Research 33, 219236.CrossRefGoogle Scholar
Engels, W. R. & Preston, C. R. (1979). Hybrid dysgenesis in Drosophila melanogaster: the biology of female and male sterility. Genetics 92, 161174.CrossRefGoogle ScholarPubMed
Finnerty, V. & Johnson, G. (1979). Post-translational modification as a potential explanation of high levels of enzyme polymorphism: xanthine dehydrogenase and aldehyde oxidase in Drosophila melanogaster. Genetics 91, 695722.CrossRefGoogle ScholarPubMed
Gilbert, D. G. & Richmond, R. C. (1982). Esterase 6 in Drosophila melanogaster: reproductive function of active and null males at low temperature. Proceedings of the National Academy of Science (U.S.A.) 79, 29622966.CrossRefGoogle ScholarPubMed
Gilbert, D. G., Richmond, R. C. & Sheehan, K. B. (1981). Studies of esterase 6 in Drosophila melanogaster. VII. The timing of remating in females inseminated by males having active or null alleles. Behavioural Genetics 11, 195208.CrossRefGoogle ScholarPubMed
Girard, P., Palabost, L. & Petit, C. (1977). Enzyme variation at seven loci in nine natural populations of Drosophila melanogaster. Biochemical Genetics 15, 589599.CrossRefGoogle ScholarPubMed
Hedrick, P. W. & McDonald, J. F. (1980). Regulatory gene adaptation: an evolutionary model. Heredity 45, 8397.CrossRefGoogle ScholarPubMed
Kidwell, M. G. (1981). Hybrid dysgenesis in Drosophila melanogaster: the genetics of cytotype determination in a neutral strain. Genetics 98, 275290.CrossRefGoogle Scholar
Laurell, C. B. (1966). Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Analytical Biochemistry 15, 4552.CrossRefGoogle ScholarPubMed
Laurie-Ahlberg, C. C., Williamson, J. H., Cochrane, B. J., Wilton, A. N. & Chasalow, F. J. (1981). Autosomal factors with correlated effects on the activities of the glucose-6-phosphate and 6-phosphogluconate dehydrogenase in Drosophila melanogaster. Genetics 99, 127150.CrossRefGoogle ScholarPubMed
Lindsley, D. L. & Grell, E. H. (1968). The Genetic Variation of Drosophila melanogaster. Washington, D.C.: Carnegie Institution.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Mane, S. D., Tompkins, L. & Richmond, R. C. (1983 a). Male esterase 6 catalyzes the synthesis of a sex pheromone in Drosophila melanogaster females. Science 222, 419421.CrossRefGoogle ScholarPubMed
Mane, S. D., Tepper, C. S. & Richmond, R. C. (1983 b). Purification and characterization of esterase 6, polymorphic carboxylesterase of Drosophila melanogaster. Submitted to Journal of Molecular Evolution.Google Scholar
Maxson, L. R. & Wilson, A. C. (1979). Rates of molecular and chromosome evolution in salamanders. Evolution 33, 734740.CrossRefGoogle ScholarPubMed
Oakeshott, J. G., Chambers, G. K., Gibson, J. B. & Wilcocks, D. A. (1981). Latitudinal relationships of esterase 6 and phosphoglucomutase gene frequencies in Drosophila melanogaster. Heredity 47, 385396.CrossRefGoogle ScholarPubMed
Richmond, R. C., Gilbert, D. G., Sheehan, K. B., Gromko, M. H. & Butterworth, F. W. (1980). Esterase 6 and reproduction in Drosophila melanogaster. Science 207, 14831485.CrossRefGoogle ScholarPubMed
Sheehan, K. B., Richmond, R. C. & Cochrane, B. J. (1979). Studies of esterase 6 in Drosophila melanogaster. III. The developmental pattern and tissue distribution. Insect Biochemistry 9, 443450.CrossRefGoogle Scholar
Sokal, R. R. & Rohlf, F. J. (1969). Biometry. New York: W. H. Freeman.Google Scholar
Steel, R. G. D. & Torrie, J. H. (1970). Principles and Procedures in Statistics. New York: McGraw-Hill.Google Scholar
Tepper, C. S., Richmond, R. C., Terry, A. L. & Senior, A. (1982). Studies of esterase 6 in Drosophila melanogaster. XI. Modification of esterase 6 activity by unlinked genes. Genetical Research 40, 109125.Google Scholar
Wilson, A. C. (1976). Gene regulation in evolution. In Molecular Evolution (ed. Ayala, F. J.). Sunderland, Mass.; Sinauer Press.Google Scholar
Wilson, A. C., Bush, G. L., Case, S. M. & King, M. C. (1975). Social structuring of mammalian populations and rate of chromosomal evolution. Proceedings of the National Academy of Science (U.S.A.) 72, 50615065.CrossRefGoogle ScholarPubMed
Wilson, A. C., Sarich, V. & Maxson, L. (1974). The importance of gene arrangement in evolution: evidence from studies of rates of chromosomal, protein, and anatomical evolution. Proceedings of the National Academy of Science (U.S.A.) 71, 30283030.CrossRefGoogle Scholar
Wright, T. R. F. (1963). The genetics of an esterase in Drosophila melanogaster. Genetics 48, 787801.Google ScholarPubMed