Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T08:28:28.506Z Has data issue: false hasContentIssue false

Structural genes for phosphatases in Aspergillus nidulans

Published online by Cambridge University Press:  14 April 2009

Mark X. Caddick*
Affiliation:
Department of Genetics Ridley Building, The University, Newcastle upon Tyne NE1 7RU, England
Herbert N. Arst Jr*
Affiliation:
Department of Genetics Ridley Building, The University, Newcastle upon Tyne NE1 7RU, England
*
*Address correspondence to this author.
*Address correspondence to this author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Although the fungus Aspergillus nidulans has a multiplicity of phosphatases and of genes where mutations affect one or more phosphatases, we have succeeded in identifying structural genes for three phosphatases as well as one other gene which might encode a fourth. Using both conditional and non-conditional mutations, palD has been shown to be the structural gene for a phosphate-repressible alkaline phosphatase, palG to be the structural gene for a non-repressible alkaline phosphatase which apparently exists in two electrophoretically distinct forms (but whose rates of thermal inactivation are apparently very similar) and pacA to be the structural gene for both intracellular and secreted forms of a phosphate-repressible acid phosphatase. Colony staining techniques for the enzymes specified by palD and pacA have been described previously but we have now shown that the enzyme specified by palG can be detected by staining toluene-permeabilized colonies. Mutations in pacG lead to loss of non-repressible acid phosphatase as judged by colony staining and electrophoretic patterns but their effects on assays of activity in cell-free extracts are only marginal. Under phosphate-limited, but not phosphate-starved or phosphate-sufficient, conditions, pacG mutations also affect the regulation of other, phosphate-repressible phosphatases. None of these phosphatases, alone or in combination, plays an essential role.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

References

Arst, H. N. Jr., Bailey, C. R. & Penfold, H. A. (1980). A possible role for acid phosphatase in γ-amino-n-butyrate uptake in Aspergillus nidulans. Archives of Microbiology 125, 153158.CrossRefGoogle ScholarPubMed
Arst, H. N. Jr., Brownlee, A. G. & Cousen, S. A. (1982). Nitrogen metabolite repression in Aspergillus nidulans: a farewell to tamA? Current Genetics 6, 245257.CrossRefGoogle ScholarPubMed
Arst, H. N. Jr. & Cove, D. J. (1969). Methylammonium resistance in Aspergillus nidulans. Journal of Bacteriology 98, 12841293.CrossRefGoogle ScholarPubMed
Arst, H. N. Jr. & Cove, D. J. (1970). Molybdate metabolism in Aspergillus nidulans. II. Mutations affecting phosphatase activity or galactose utilization. Molecular and General Genetics 108, 146153.CrossRefGoogle ScholarPubMed
Arst, H. N. Jr., Tollervey, D. W. & Sealy-Lewis, H. M. (1982). A possible regulatory gene for the molybdenum – containing cofactor in Aspergillus nidulans. Journal of General Microbiology 128, 10831093.Google ScholarPubMed
Bal, J., Kajtaniak, E. M. & Pieniazek, N. J. (1977). 4-nitro- quinoline-1-oxide: a good mutagen for Aspergillus nidulans. Mutation Research 56, 153156.CrossRefGoogle Scholar
Beever, R. E. (1983). Osmotic sensitivity of fungal variants resistant to dicarboximide fungicides. Transactions of the British Mycotogical Society 80, 327331.CrossRefGoogle Scholar
Brownlee, A. G. & Arst, H. N. Jr. (1983). Nitrate uptake in Aspergillus nidulans and involvement of the third gene of the nitrate assimilation gene cluster. Journal of Bacteriology 155, 11381146.CrossRefGoogle ScholarPubMed
Brownlee, A. G., Caddick, M. X. & Arst, H. N. Jr. (1983). A novel phosphate-repressible phosphodiesterase in Aspergillus nidulans. Heredity 51, 529.Google Scholar
Clutterbuck, A. J. (1974). Aspergillus nidulans. In Handbook of Genetics, vol. 1 (ed. King, R. C.), pp. 447510. New York: Plenum Press.Google Scholar
Clutterbuck, A. J. (1984). Loci and linkage map of the filamentous fungus Aspergillus nidulans. (Eidam) Winter (n = 8). Genetic Maps 3, 265273.Google Scholar
Cove, D. J. (1966). The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochimica et Biophysica Acta 113, 5156.CrossRefGoogle ScholarPubMed
Dorn, G. (1965 a). Genetic analysis of the phosphatases in Aspergillus nidulans. Genetical Research 6, 1326.CrossRefGoogle ScholarPubMed
Dorn, G. (1965 b). Phosphatase mutants in Aspergillus nidulans. Science 150, 11831184.CrossRefGoogle ScholarPubMed
Dorn, G. L. (1967). Purification of two alkaline phosphatases from Aspergillus nidulans. Biochimica et Biophysica Acta 132, 190193.CrossRefGoogle ScholarPubMed
Dorn, G. L. (1968). Purification and characterization of phosphatase I from Aspergillus nidulans. Journal of Biological Chemistry 243, 35003506.CrossRefGoogle ScholarPubMed
Dorn, G. & Rivera, W. (1966). Kinetics of fungal growth and phosphatase formation in Aspergillus nidulans. Journal of Bacteriology 92, 16181622.CrossRefGoogle ScholarPubMed
Harsanyi, Z. & Dorn, G. L. (1972). Purification and characterization of acid phosphatase V from Aspergillus nidulans. Journal of Bacteriology 110, 246255.CrossRefGoogle ScholarPubMed
Hasunuma, K. (1977). Control of the production of orthophosphate repressible enzymes in Neurospore crassa. Molecular and General Genetics 151, 510.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
McCully, K. S. & Forbes, E. (1965). The use of p-fluorophenylalanine with ‘master-strains’ of Aspergillus nidulans for assigning genes to linkage groups. Genetical Research 6, 352359.CrossRefGoogle ScholarPubMed
Martinez-Rossi, N. M. & Azevedo, J. L. (1982). Two-way selection of mutants and revertants to chloroneb resistance in Aspergillus nidulans. Mutation Research 96, 3139.CrossRefGoogle ScholarPubMed
Nagy, A. H., Erdös, G., Beliaeva, N. N. & Gyurján, I. (1981). Acid phosphatase isoenzymes of Chlamydomonas reinhardii. Molecular and General Genetics 184, 314317.CrossRefGoogle ScholarPubMed
Polya, G. M., Brownlee, A. G. & Hynes, M. J. (1975). Enzymology and genetic regulation of a cyclic nucleotide-binding phosphodiesterase-phosphomonoesterase from Aspergillus nidulans. Journal of Bacteriology 124, 693703.CrossRefGoogle ScholarPubMed
Pontecorvo, G., Roper, J. A., Hemmons, L. M., Macdonald, K. D. & Bufton, A. W. J. (1953). The genetics of Aspergillus nidulans. Advances in Genetics 5, 141238.CrossRefGoogle ScholarPubMed
Scazzocchio, C., Sdrin, N. & Ong, G. (1982). Positive regulation in a eukaryote, a study of the uaY gene of Aspergillus nidulans: I. Characterization of alleles, dominance and complementation studies, and a fine structure map of the uaY–oxpA cluster. Genetics, 100, 185208.CrossRefGoogle Scholar
Threlfall, R. J. (1968). The genetics and biochemistry of mutants of Aspergillus nidulans resistant to chlorinated nitrobenzenes. Journal of General Microbiology 52, 3544.CrossRefGoogle Scholar
van Tuyl, J. M. (1977). Genetics of fungal resistance to systemic fungicides. Ph.D thesis. Agricultural University, Wageningen, The Netherlands.Google Scholar
Wilkins, A. S. (1972). Physiological factors in the regulation of alkaline phosphatase synthesis in Escherichia coli. Journal of Bacteriology 110, 616623.CrossRefGoogle ScholarPubMed