Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T12:10:44.382Z Has data issue: false hasContentIssue false

A steep cline for mitochondrial DNA in Danish mice

Published online by Cambridge University Press:  14 April 2009

F. Vanlerberghe
Affiliation:
Laboratoire de génétique, Institut des Sciences de I'Evolution(UA. CNRS 327), U.S.T.L., Place E. Batailon, 34060 Montpellier CedexFrance
P. Boursot*
Affiliation:
Laboratoire de génétique, Institut des Sciences de I'Evolution(UA. CNRS 327), U.S.T.L., Place E. Batailon, 34060 Montpellier CedexFrance
J. T. Nielsen
Affiliation:
Institute of Molecular Biology and Plant Physiology, University of Aarhus, Aarhus Denmark
F. Bonhomme
Affiliation:
Laboratoire de génétique, Institut des Sciences de I'Evolution(UA. CNRS 327), U.S.T.L., Place E. Batailon, 34060 Montpellier CedexFrance
*
* Corresponding author
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One hundred and ninety-eight mice trapped along a south–north transect through the Danish hybrid zone between Mus musculus domesticus and M. m. musculus were typed for mitochondrial DNA (mtDNA), the Y chromosome and ten autosomal loci encoding diagnostic proteins. The southern (domesticus) populations display two mtDNA variants (S1 and S2) and the northern (musculus) have a third mtDNA variant (N) of domesticus origin. Across the hybrid zone defined by ten autosomal loci, there is a steep dine between the southern and northern types of mtDNA. As well as confirming an earlier finding that Danish musculus all have a domesticus mtDNA (Ferris et al. 1983a, & b), our results show that this mtDNA takeover is not the result of a persistent mitochondrial gene flow between the two subspecies. While the coincident dines for the ten autosomal loci and the abrupt dine for the Y chromosome can be explained by selection, it is less likely to be the case for the mtDNA exchanges. We discuss the possible role of sex-linked migration and genetic drift to account for the distribution of the mitochondrial variants.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Avise, J. C. (1986). Mitochondrial DNA and the evolutionary genetics of higher animals. In The Evolution of DNA Sequences (ed. Clarke, B. C., Robertson, A. and Jeffreys, A. J.). Proceedings of the Royal Society of London, 312; 325342Google Scholar
Barton, N. H. and Hewitt, G. M. (1985). Analysis of hybrid zones. Annual Review of Ecology and Systematics 16; 113148.CrossRefGoogle Scholar
Barton, N. H. & Jones, J. S. (1983). Mitochondrial DNA: new clues about evolution. Nature 306; 317318.CrossRefGoogle ScholarPubMed
Bibb, M. J., Van Etten, R. A., Wright, C. T., Walberg, M. W. & Clayton, D. A. (1981). Sequence and gene organization of mouse mitochondrial DNA. Cell 26; 167180.CrossRefGoogle ScholarPubMed
Bonhomme, F., Catalan, J., Gerasimov, S., Orsini, P. & Thaler, L. (1983). Le complexe d'espéces du genre Mus. en Europe centrale et orientale. I. Génétique. Zeitung für Säugetierkunde 48, 7885.Google Scholar
Bonhomme, F., Catalan, J., Britton-Davidian, J., Chapman, V. M., Moriwaki, K., Nevo, E. & Thaler, L. (1984). Biochemical diversity and evolution in the genus Mus. Biochemical Genetics 22, 275303.CrossRefGoogle ScholarPubMed
Boursot, P., Bonhomme, F., Britton-Davidian, J., Catalan, J., Yonekawa, H., Orsini, P., Gerasimov, S. & Thaler, L. (1984). Introgression différentielle des génomes nucléaires et mitochondriaux chez deux semi-espèces européennes de souris. Comptes Rendus de l'Académie des Sciences, Paris (série III) 299, 691693.Google Scholar
Boursot, P. & Bonhomme, F. (1986). Génétique et évolution du genome mitochondrial des Métazoaires. Génétique Selection Evolution 18, 7398.CrossRefGoogle Scholar
Boursot, P., Yonekawa, H. & Bonhomme, F. (1987). Heteroplasmy in mice with deletion of a large coding region of mitochondrial DNA. Molecular Biology and Evolution 4, 4655.Google ScholarPubMed
Butler, R. G. (1980). Population size, social behaviour, and dispersal in house mice: a quantitative investigation. Animal Behaviour 28, 7885.Google Scholar
Carr, S. M., Ballinger, S. W., Derr, J. N., Blankenship, L. H. and Bickham, J. W. (1986). Mitochondrial DNA analysis of hybridization between sympatric white-tailed deer and mule deer in west Texas. Proceedings of the National Academy of Sciences, USA 83, 95769580.Google Scholar
Chomyn, A., Mariottini, P., Cleeter, M. W. J., Ragan, C. I., Matsuno-Yagi, A., Hatefi, Y., Doolittle, R. F. & Attardi, G. (1985). Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase. Nature 314, 592597.Google Scholar
Ferris, S. D., Sage, R. D., Huang, C. M., Nielsen, J. T., Ritte, U. & Wilson, A. C. (1983 a). Flow of mitochondrial DNA across a species boundary. Proceedings of the National Academy of Sciences, USA 80, 22902294.Google Scholar
Ferris, S. D., Sage, R. D., Prager, E. M., Ritte, U. & Wilson, A. C. (1983 b). Mitochondrial DNA evolution in mice. Genetics 105; 681721.CrossRefGoogle ScholarPubMed
Gyllensten, U. & Wilson, A. C. (1987). Interspecific mitochondrial DNA transfer and the colonization of Scandinavia by mice. Genetical Research 49, 2529.CrossRefGoogle ScholarPubMed
Harrisson, R. G., Rand, D. M. & Wheeler, W. C. (1987). Mitochondrial variation in field crickets across a narrow hybrid zone. Molecular Biology and Evolution 4, 144158.Google Scholar
Hunt, W. G. & Selander, R. K. (1973). Biochemical genetics of hybridisation in European house mice. Heredity 31, 1133.CrossRefGoogle ScholarPubMed
Lamb, T. & Avise, J. C. (1986). Directional introgression of mitochondrial DNA in a hybrid population of tree frogs: the influence of mating behavior. Proceedings of the National Academy of Sciences, USA 83, 25262530.CrossRefGoogle Scholar
Nelson, K., Baker, R. J. & Honeycutt, R. L. (1987). Mitochondrial DNA and protein differentiation between hybridizing cytotypes of the white-footed mouse, Peromyscus leucopus. Evolution 41, 864872.Google ScholarPubMed
Pasteur, N., Pasteur, G., Bonhomme, F., Catalan, J. & Britton-Davidian, J. (1987). Manuel technique de génétique par électrophorèse des protéines. In Technique et Documentation, 217 pp. Paris: Lavoisier.Google Scholar
Powell, J. R. (1983). Interspecific cytoplasmic gene flow in the absence of nuclear gene flow: evidence from Drosophila. Proceedings of the National Academy of Sciences, USA 80, 492495.CrossRefGoogle ScholarPubMed
Sage, R. D., IIIWhitney, J. B. & Wilson, A. C. (1986 a). Genetic analysis of a hybrid zone between Domesticus and Musculus mice (Mus musculus complex): hemoglobin polymorphisms. In Current Topics in Microbiology and Immunology Berlin, Heidelberg: Springer Verlag 127, 7585.Google Scholar
Sage, R. D., Heyneman, D., Lim, K. C. & Wilson, A. C. (1986 b). Wormy mice in a hybrid zone. Nature 324 6063.CrossRefGoogle Scholar
Siegel, S. (1956). Nonparametric Statistics for the Behavioural Sciences 312 pp. New York, Toronto, London: McGraw-Hill Book Company.Google Scholar
Singleton, G. R. & Hay, D. A. (1983). The effect of social organization on reproductive success and gene flow in colonies of wild house mice, Mus musculus. Behavioural Ecology and Sociobiology 12, 4956.Google Scholar
Solignac, M. & Monnerot, M. (1986). Race formation, speciation and introgression within Drosophila simulans, D. mauritiana and D. sechellia inferred from mitochondrial analysis. Evolution 40, 531539.Google Scholar
Spolsky, C. & Uzzell, T. (1986). Evolutionary history of the hybridogenetic hybrid frog Rana esculenta as deduced from mtDNA analyses. Molecular Biology and Evolution 3; 4456.Google ScholarPubMed
Szymura, J. M. & Barton, N. H. (1986). Genetic analysis of a hybrid zone between the fire-bellied toads, Bombina bombina and B. variegata, near Cracow in Southern Poland. Evolution 40, 11411159.Google Scholar
Tegelström, H. (1987). Transfer of mitochondrial DNA from the northern Red-Backed Vole (Clethrionomys rutilus) to the Bank Vole (C. glareolus). Journal of Molecular Evolution 24, 218227.CrossRefGoogle Scholar
Vanlerberghe, F., Boursot, P., Catalan, J., Gerasimov, S., Bonhomme, F., Botev, B. A. & Thaler, L. (1988) Analyse génétique de la zone d'hybridation entre les deux sous-espèces de souris Mus musculus domesticus et M. m. musculus en Bulgarie. Genome (In the Press.)CrossRefGoogle Scholar
Vanlerberghe, F., Dod, B., Boursot, P., Bellis, M. & Bonhomme, F. (1986). Absence of Y chromosome introgression across the hybrid zone between Mus musculus domesticus and Mus musculus musculus. Genetical Research 48, 191197.CrossRefGoogle ScholarPubMed
Wilson, A. C., Cann, R. L., Carr, S. M., George, M., Gyllensten, U. B., Helm-Bychowski, K. M., Higuchi, G., Palumbi, S. R., Prager, E. M., Sage, R. D. & Stoneking, M. (1985). Mitochondrial DNA and two perspectives on evolutionary genetics. Biological Journal of the Linnean Society 26, 375400.CrossRefGoogle Scholar
Yonekawa, H., Moriwaki, K., Gotoh, O., Miyashita, S., Migita, N., Bonhomme, F., Hjorth, J. P., Petras, M. L. & Tagashira, Y. (1982). Origins of laboratory mice deduced from restriction patterns of mitochondrial DNA. Differentiation 22; 222226.Google Scholar