Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T00:05:52.480Z Has data issue: false hasContentIssue false

A simple technique for the identification of chain termination suppressor mutants in species of Salmonella

Published online by Cambridge University Press:  14 April 2009

R. W. Hedges
Affiliation:
Bacteriology Department, Royal Postgraduate Medical School, Du Cane Road, London, W. 12
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Chain-termination suppressors which are almost certainly amber suppressors have been isolated in Salmonella anatum by a technique involving the use of amber mutants of bacteriophage 01. The same technique could be used in any species of Salmonella (and many strains of Arizona) and analogous techniques are suggested for use in other genera of bacteria and in higher plants.

Type
Short Paper
Copyright
Copyright © Cambridge University Press 1971

References

REFERENCES

Berkowitz, D., Hushon, J. M., Whitfield, H. J., Roth, J. & Ames, B. N. (1968). Procedure for identifying nonsense mutations. Journal of Bacteriology 96, 215220.CrossRefGoogle ScholarPubMed
Bernstein, H., Edgar, R. S. & Denhardt, G. H. (1965). Intragenic complementation among temperature sensitive mutants of bacteriophage T4D. Genetics 51, 9871002.CrossRefGoogle ScholarPubMed
Bertani, G., Torheim, B. & Laurent, T. (1967). Multiplication in Serratia of a bacteriophage originating from Escherichia coli: Lysogenization and host controlled modification. Virology 32, 619632.CrossRefGoogle Scholar
Brenner, S., Barnett, L., Katz, E. R. & Chick, F. H. C. (1967). UGA: a third nonsense triplet in the genetic code. Nature, London 213, 449450.CrossRefGoogle Scholar
Brenner, S., Stretton, A. O. W. & Kaplan, S. (1965). Genetic code: the ‘nonsense’ triplets for chain termination and their suppression. Nature, London 206, 994998.CrossRefGoogle ScholarPubMed
Cherry, W. B., Davis, B. R., Edwards, P. R. & Hogan, R. B. (1954). A simple procedure for the identification of the genus Salmonella by means of a specific bacteriophage. Journal of Laboratory and Clinical Medicine 44, 4955.Google ScholarPubMed
Coetzee, J. N. (1963). Lysogeny in Proteus rettgeri and the host range of P. rettgeri and P. hauseri bacteriophages. Journal of General Microbiology 31, 219229.CrossRefGoogle Scholar
Edgar, R. S., Denhardt, G. H. & Epstein, R. H. (1964). A comparative study of conditional mutations of bacteriophage T 4D. Genetics 49, 635648.CrossRefGoogle Scholar
Edgar, R. S. & Lielausis, I. (1964). Temperature sensitive mutants of bacteriophage T 4D: their isolation and genetic characterization. Genetics 49, 649662.CrossRefGoogle Scholar
Eskridge, R. W., Weinfeld, H. & Paigen, K. (1967). Susceptibility of different coliphage genomes to host-controlled variation. Journal of Bacteriology 93, 835844.CrossRefGoogle ScholarPubMed
Felix, A. & Callow, B. R. (1943). Typing of paratyphoid B bacilli by means of Vi bacteriophage. British Medical Journal ii, 127130.CrossRefGoogle Scholar
Hedges, R. W. (1971). Transduction mechanisms of bacteriophage ε15. I. General properties of the system. Genetical Research 18, 920.CrossRefGoogle Scholar
Iseki, S. & Sakai, T. (1954). Transduction of biochemical properties in Salmonella E group. Proceedings of the Japan Academy 30, 143147.CrossRefGoogle Scholar
Kameda, M., Harada, K., Suzuki, M. & Mitsuhashi, S. (1965). Drug resistance of enteric bacteria V high frequency transduction of B factors with bacteriophage epsilon. Journal of Bacteriology 90, 11741181.CrossRefGoogle Scholar
Lefe, J. & Beardsley, R. E. (1970). Action tumorigène de l'acide nucleique d'un bactériophage present dans les cultures de tissue tumoral de Tournesol (Helianthus annua). Comptes Rendus Academie Science, Paris 270, 25052507.Google Scholar
Marmur, J. & Doty, P. (1962). Determination of the base composition of deoxyribonucleic acid. Journal of Molecular Biology 5, 109118.CrossRefGoogle ScholarPubMed
Srivastava, B. I. S. & Chadha, K. C. (1970). Liberation of Agrobacterium iumefaciens DNA from the crown gall tumor cell DNA by shearing. Biochemical and Biophysical Research Communications 40, 968972.CrossRefGoogle ScholarPubMed
Stretton, A. O. W., Kaplan, S. & Brenner, S. (1967). Nonsense codons. Cold Spring Harbor Symposium on Quantitative Biology 31, 173179.CrossRefGoogle Scholar
Uetake, H., Luria, S. E. & Burrous, J. W. (1958). Conversion of somatic antigens in Salmonella by phage infection leading to lysis or lysogeny. Virology 5, 6891.CrossRefGoogle ScholarPubMed
Uetake, H., Nakagawa, T. & Akiba, T. (1955). Relationship of bacteriophage to antigenic changes in group E Salmonellas. Journal of Bacteriology 69, 571579.CrossRefGoogle Scholar
Uetake, H., Toyama, S. & Hagiwara, S. (1964). On the mechanism of host induced modification. Virology 22, 202213.CrossRefGoogle ScholarPubMed
Wassermann, M. M. & Seligmann, E. (1953). Serratia marcescens bacteriophages. Journal of Bacteriology 66, 119120.CrossRefGoogle ScholarPubMed
Whitfield, H. J., Martin, R. G. & Ames, B. N. (1966). Classification of amino transferase (C gene) mutants in the histidine operon. Journal of Molecular Biology 21, 335355.CrossRefGoogle Scholar
Zipser, D. (1967). UGA: a third class of suppressible polar mutants. Journal of Molecular Biology 29, 441445.CrossRefGoogle Scholar