Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T13:38:42.987Z Has data issue: false hasContentIssue false

A sex-linked anaemia in the mouse

Published online by Cambridge University Press:  14 April 2009

Manjit Singh Grewal
Affiliation:
Experimental Genetics Research Unit (Medical Research Council), University College London
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A sex-linked recessive anaemia (symbol sla) in the mouse is responsible for a rather uncharacteristic blood picture which persists virtually unchanged throughout life. The red cell count is reduced to about three-quarters of the normal value, the cells produced differ from normal ones by a slight reduction in the mean corpuscular Hb concentration and a slight reduction in the mean cell volume. As the mean cell diameter is more strongly reduced, it is concluded that the cells must be thicker than normal. There is a reduction of haemopoietic tissue both in the liver and in the bone marrow.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1962

References

REFERENCES

Attfield, M. (1951). Inherited macrocytic anaemias in the house mouse. III. Red blood cell diameters. J. Genet. 50, 250263.CrossRefGoogle ScholarPubMed
Bennett, D. (1956). Developmental analysis of a mutation with pleiotropic effects in the mouse. J. Morph. 98, 199234.CrossRefGoogle Scholar
Borghese, E. (1959). The present state of research on WW mice. Acta anat. 36, 185220.CrossRefGoogle ScholarPubMed
Cohen, B. L. & Shreffler, D. C. (1961). A revised nomenclature for the mouse transferrin locus. Genet. Res. 2, 306308.CrossRefGoogle Scholar
Custer, R. P. (1932). Studies on the structure and function of bone marrow. J. Lab. clin. Med. 17, 951 and 960.Google Scholar
Deol, M. S. (1961). Genetical studies on the skeleton of the mouse. XXVHL Tail-short. Proc. roy. Soc. B, 155, 7895.Google Scholar
Falconer, D. S. & Isaacson, J. H. (1962). The genetics of sex-linked anaemia in the mouse. Genet. Res. 3, 248250.CrossRefGoogle Scholar
Grüneberg, H. (1942 a). The anaemia of flexed-tailed mice (Mus musculus L.). I. Static and dynamic haematology. J. Genet. 43, 4568.CrossRefGoogle Scholar
Grüneberg, H. (1942 b). The anaemia of flexed-tailed mice (Mus musculus L.). II. Siderocytes. J. Genet. 44, 246271.CrossRefGoogle Scholar
Kunze, H. G. (1954). Die Erythropoese bei einer erblichen Anämie röntgenmutierter Mäuse. Folia haemat., Lpz., 72, 391436.Google Scholar
Ponder, E. (1929). On the spherical form of the mammalian erythrocytes. Brit. J. exp. Biol. 6, 387398.CrossRefGoogle Scholar
Poulik, M. D. (1957). Starch gel electrophoresis in a discontinuous system of buffers. Nature, Lond., 180, 14771479.CrossRefGoogle Scholar
Ranney, H. M., Smith, G. M. & Gluecksohn-Waelsch, S. (1960). Haemoglobin differences in inbred strains of mice. Nature, Lond., 188, 212214.CrossRefGoogle ScholarPubMed
Stevens, L. C. & Mackensen, J. A. (1958). The inheritance and expression ofa mutation in the mouse affecting blood formation, the axial skeleton, and body size. J. Hered. 49, 153160.CrossRefGoogle Scholar
Stevens, L. C., Mackensen, J. A. & Bernstein, S. E. (1959). A mutation causing neonatal jaundice in the house mouse. J. Hered. 50, 3539.CrossRefGoogle Scholar
Thoms, O. (1951). Das histologische Verhalten von Milz, Leber und Knochenmark bei der erblichen Anämie röntgenmutierter Mäuse. Wiss. Z.M.-Luther Univ., Halle, 1, 1326.Google Scholar
Wintrobe, M. M. (1946). Clinical Haematology. 2nd ed.London: Henry Kimpton.Google Scholar