Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T07:44:38.243Z Has data issue: false hasContentIssue false

Sex pili and common pili in the conjugational transfer of colicin factor Ib by Salmonella typhimurium

Published online by Cambridge University Press:  14 April 2009

G. G. Meynell
Affiliation:
Guinness-Lister Research Unit
A. M. Lawn
Affiliation:
Department of Electron Microscopy, Lister Institute of Preventive Medicine, Chelsea Bridge Road, London, S.W.1
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The kinetics of spread of colicin factor Ib (colIb) in col− cultures of S. typhimurium was studied. The rate of spread was greater with pil+ strains (those forming common pili) than with pil− strains. The difference reflects inefficient pairing between pil− cells, which donate or receive colIb efficiently only when mated with pil+ cells. The donor function of colIb is known to be repressed a few generations after it is acquired by a col− cell. While donor ability is manifest, a new type of pilus (the ‘Ib pilus’) is formed which is morphologically distinct from common pili and other sex pili such as that determined by the F factor. The Ib pilus is presumably involved in the transfer of colIb by conjugation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1967

References

REFERENCES

Brinton, C. C. (1959). Non-flagellar appendages of bacteria. Nature, Lond. 183, 782786.CrossRefGoogle ScholarPubMed
Brinton, C. C. (1965). The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in Gram negative bacteria. Trans. N. Y. Acad. Sci. 27, 10031054.CrossRefGoogle Scholar
Brinton, C. C., Gemski, P. & Carnahan, J. (1964). A new type of bacterial pilus genetically controlled by the fertility factor of E. coli K12 and its role in chromosome transfer. Proc. natn. Acad. Sci. U.S.A. 52, 776783.CrossRefGoogle Scholar
Caro, L. G. & Schnös, M. (1966). The attachment of the male-specific bacteriophage F1 to sensitive strains of Escherichia coli. Proc. natn. Acad. Sci. U.S.A. 56, 126132.Google Scholar
Clark, A. J. & Adelberg, E. A. (1962). Bacterial conjugation. A. Rev. Microbiol. 16, 289319.CrossRefGoogle ScholarPubMed
Crawford, E. M. & Gesteland, R. F. (1964). The adsorption of bacteriophage R-17. Virology, 22, 165167.CrossRefGoogle Scholar
Datta, N., Lawn, A. M. & Meynell, E. W. (1966). The relationship of F type piliation and F phage sensitivity to Drug Resistance Transfer in R+FEscherichia coli K12. J. gen. Microbiol. 45, 365376.CrossRefGoogle Scholar
Demerec, M., Adelberg, E. A., Clark, A. J. & Hartman, P. E. (1966). A proposal for a uniform nomenclature in bacterial genetics. Genetics, 54, 6176.CrossRefGoogle ScholarPubMed
Duguid, J. P., Anderson, E. S. & Campbell, O. (1966). Fimbriae and adhesive properties in salmonellae. J. Path. Bact. 92, 107138.CrossRefGoogle ScholarPubMed
Duguid, J. P., Smith, I. W., Dempster, G. & Edwards, P. N. (1955). Non-flagellar filamentous appendages (‘fimbriae’) and haemagglutinating activity of Bacterium coli. J. Path. Bact. 70, 335348.Google Scholar
Fredericq, P. (1956). Recherches sur la fréquence des souches transductrices des propriétés colicinogènes. C. r. Séanc. Soc. Biol. 150, 10361039.Google Scholar
Fredericq, P. (1957). Colicins. A. Rev. Microbiol. 11, 722.CrossRefGoogle ScholarPubMed
Fredericq, P. (1958). Colicins and colicinogenic factors. Symp. Soc. exp. Biol. 12, 104122.Google ScholarPubMed
Houwink, A. L. & Iterson, W. van (1950). Electron microscopical observations on bacterial cytology. Biochim. biophys. Acta, 5, 1044.CrossRefGoogle ScholarPubMed
Lawn, A. M. (1966). Morphological features of the pili associated with Escherichia coli K12 carrying R factors or the F factor. J. gen. Microbiol. 45, 377383.CrossRefGoogle ScholarPubMed
Meynell, G. G. (1962). Salmonella enteritidis as a genetic donor in intraspecific and interspecific crosses initiated by colicine factors. J. gen. Microbiol. 28, 169176.Google Scholar
Monk, M. & Clowes, R. C. (1964). The regulation of colicin synthesis and colicin factor transfer in Escherichia coli K12. J. gen. Microbiol. 36, 385392.Google Scholar
Mulczyk, M. & Duguid, J. P. (1966). Influence of the state of fimbriation on transmission of the colicinogenic factor colI between strains of Shigella flexneri. J. gen. Microbiol. (in press).CrossRefGoogle Scholar
Ozeki, H. (1960). Colicinogeny in Salmonella: genetic and other studies. Ph.D. Thesis, University of London.Google Scholar
Ozeki, H., Howarth, S. & Clowes, R. C. (1961). Colicine factors as fertility factors in bacteria. Nature, Lond. 190, 986989.Google Scholar
Pardee, A. B., Jacob, F. & Monod, J. (1959). The genetic control and cytoplasmic expression of ‘inducibility’ in the synthesis of β-galactosidase by E. coli. J. molec. Biol. 1, 165178.CrossRefGoogle Scholar
Rownd, R., Nakaya, R. & Nakamura, A. (1966). Molecular nature of the drug-resistance factors of the Enterobacteriacae. J. molec. Biol. 17, 376393.CrossRefGoogle Scholar
Silver, S. & Ozeki, H. (1962). Transfer of deoxyribonucleic acid accompanying the transmission of colicinogenic properties by mating. Nature, Lond. 195, 873874.CrossRefGoogle ScholarPubMed
Smith, S. M. & Stocker, B. A. D. (1962). Colicinogeny and recombination. Br. med. Bull. 18, 4651.Google Scholar
Stocker, B. A. D. (1966). Heterogeneity of I colicines and I colicine factors. Heredity, Lond. 21, 166.Google Scholar
Stocker, B. A. D., Smith, S. M. & Ozeki, H. (1963). High infectivity of Salmonella typhimurium newly infected by the colI factor. J. gen. Microbiol. 30, 201221.CrossRefGoogle Scholar