Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T04:41:28.689Z Has data issue: false hasContentIssue false

The role of latent viruses in subline differentiation in inbred strains of mice

Published online by Cambridge University Press:  14 April 2009

G. A. De S. Wickramaratne
Affiliation:
Department of Animal Genetics, University College London, Wolfson House, Stephenson Way, London NW1 2HE
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The possibility that changes in latent viruses would contribute to the differentiation of sublines in inbred strains of mice was investigated using the Bittner virus and the BALB/c strain of mice. The results show that, at least for this combination, there is no reason for implicating latent viruses in subline differentiation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

References

REFERENCES

Beardmore, J. A. (1970). Viral components in the genetic background? Nature 226, 766767.CrossRefGoogle ScholarPubMed
Bentvelzen, P., Daams, J. H., Hegeman, P. & Calafat, J. (1970). Genetic transmission of viruses that incite mammary tumour in mice. Proceedings of the National Academy of Sciences, U.S.A. 67, 377384.CrossRefGoogle Scholar
Berry, R. J. (1963). Epigenetic polymorphism in wild populations of Mus musculus. Genetical Research 4, 193220.CrossRefGoogle Scholar
Berry, R. J. (1968). The biology of non-metrical variation in mice and man. In The Skeletal Biology of Earlier Human Populations (ed. Brothwell, D. R.), pp. 103133. London: Pergamon.Google Scholar
Berry, R. J. & Searle, A. G. (1963). Epigenetic polymorphism of the rodent skeleton. Proceedings of the Zoological Society of London 140, 577615.CrossRefGoogle Scholar
Carpenter, J. R., Grüneberg, H. & Russell, E. S. (1957). Genetical differentiation involving morpholgoical characters in an inbred strain of mice. II. American branches of the C57BL and C57BR strains. Journal of Morphology 100, 377388.CrossRefGoogle Scholar
Deol, M. S. (1955). Genetical studies on the skeleton of the mouse. XIV. Minor variations of the skull. Journal of Genetics 53, 498514.CrossRefGoogle Scholar
Deol, M. S., Grüneberg, H., Searle, A. G. & Truslove, G. M. (1957). Genetical differentiation involving morphological characters in an inbred strain of mice. I. A British branch of the C57BL strain. Journal of Morphology 100, 345376.CrossRefGoogle Scholar
Deol, M. S., Grüneberg, H., Searle, A. G. & Truslove, G. M. (1960). How pure are our inbred strains of mice? Genetical Research 1, 5058.CrossRefGoogle Scholar
Deol, M. S. & Truslove, G. M. (1957). Genetical studies on the skeleton of the mouse. XX. Maternal physiology and variation in the skeleton of C57BL mice. Journal of Genetics 55, 228312.CrossRefGoogle Scholar
Green, E. L. (1953). A skeletal difference between sublines of the C3H strain of mice. Science 117, 8182.CrossRefGoogle ScholarPubMed
Grewal, M. S. (1962). The rate of divergence of sublines in the C57BL strain of mice. Genetical Research 3, 226237.CrossRefGoogle Scholar
Grüneberg, H. (1950). Genetical studies on the skeleton of the mouse. I. Minor variations of the vertebral column. Journal of Genetics 50, 112141.CrossRefGoogle ScholarPubMed
Grüneberg, H. (1951). The genetics of a tooth defect in the mouse. Proceedings of the Royal Society B 138, 437451.Google Scholar
Grüneberg, H. (1952). Genetical studies on the skeleton of the mouse. IV. Quasi-continuous variation. Journal of Genetics 51, 95114.CrossRefGoogle Scholar
Grüneberg, H. (1954). Variation within an inbred strain of mice. Nature 173, 674676.CrossRefGoogle Scholar
Grüneberg, H. (1955). Genetical studies on the skeleton of the mouse. XV. Relations between major and minor variants. (With an appendix by C. A. B. Smith.) Journal of Genetics 53, 515535.CrossRefGoogle Scholar
Grüneberg, H. (1963). The Pathology of Development. Oxford: Blackwell Scientific Publications.Google Scholar
Grüneberg, H. (1970). Is there a viral component in the genetic background? Nature 225, 3941.CrossRefGoogle Scholar
Keeler, C. E. (1930). ‘Parted frontals’ in mice. A dominant hereditary character in the house mouse Mus musculus. Journal of Heredity 21, 1920.CrossRefGoogle Scholar
Keeler, C. E. (1933). Interfrontal – a hereditary cranial variation of the house mouse. Journal of Mammalogy 14, 7576.CrossRefGoogle Scholar
Luther, P. G. (1949). Enzymatic maceration of skeletons. Proceedings of the Linnean Society 161 (2), 146147.Google Scholar
Searle, A. G. (1954 a). Genetical studies on the skeleton of the mouse. IX. Causes of variations within pure lines. Journal of Genetics 52, 68102.CrossRefGoogle Scholar
Searle, A. G. (1954 b). Genetical studies on the skeleton of the mouse. X. Rarer variants in the A and C57BL pure lines. Journal of Genetics 52, 103110.CrossRefGoogle Scholar
Searle, A. G. (1954 c). Genetical studies on the skeleton of the mouse. XI. The influence of diet on variation within pure lines. Journal of Genetics 52, 413424.Google Scholar
Searle, A. G. (1963). The genetic effects of radiation on continuous and quasi-continuous variation in mice. Proceedings of the Second International Conference on Human Genetics, pp. 12981300.Google Scholar
Todaro, G. J. & Huebner, R. J. (1972). The viral oncogene hypothesis: new evidence. Proceedings of the National Academy of Sciences, U.S.A. 69, 10091015.CrossRefGoogle Scholar
Truslove, G. M. (1952). Genetical studies on the skeleton of the mouse. V. ‘Interfrontal’ and ‘parted frontals’. Journal of Genetics 51, 115122.CrossRefGoogle Scholar
Truslove, G. M. (1954). Genetical studies on the skeleton of the mouse. XIII. Variations in the presphenoid. Journal of Genetics 52, 589602.CrossRefGoogle Scholar
Weber, W. (1950). Genetical studies on the skeleton of the mouse. III. Skeletal variation in wild populations. Journal of Genetics 50, 174178.CrossRefGoogle ScholarPubMed
Yong, H. S. (1972). Is subline differentiation a continuing process in inbred strains of mice? Genetical Research 19, 5359.Google Scholar