Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T01:55:57.587Z Has data issue: false hasContentIssue false

Repression of induction by u.v. of λ phage by exrA mutations in Escherichia coli

Published online by Cambridge University Press:  14 April 2009

John Donch
Affiliation:
Palo Alto Medical Research Foundation, 860 Bryant Street, Palo Alto, California 94301
Joseph Greenberg
Affiliation:
Palo Alto Medical Research Foundation, 860 Bryant Street, Palo Alto, California 94301
Michael H. L. Green
Affiliation:
Palo Alto Medical Research Foundation, 860 Bryant Street, Palo Alto, California 94301
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect of ultraviolet radiation (u.v.) on λ lysogens of exrA strains of Escherichia coli was studied. exrA strains could be lysogenized with, as well as support the vegetative reproduction of, λ. However, though spontaneous induction of λ occurred in exrA(λ) strain at 10% the frequency of exrA+(λ) strain, exrA(λ) strains were not induced by u.v. Because λ was not induced in exrA(λ) strains, lysogens of these strains were no more sensitive to u.v. than were non-lysogens.

The heat-inducible mutant λhcI857 could be induced in exrA strains at elevated temperatures. Furthermore, u.v. irradiation of exrAhcI857) strain did not prevent the heat induction of this λ mutant. The exrA mutation appeared to interfere only with the inactivation of λ repressor by u.v.

Among the exrA strains studied was strain Bs1(exr A uvrB). Whereas the λ lysogen of strain Bsl could not be induced by u.v. and was no more sensitive to u.v. than its non-lysogen, the exrA+uvrB(λ) derivative of strain Bsl could be induced by u.v. and was more sensitive to u.v. than its non-lysogen.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

References

REFERENCES

Adams, M. (1959). Bacteriophages. New York: Interscience Publishers, Inc.CrossRefGoogle Scholar
Brooks, K. & Clark, A. J. (1967). Behaviour of λ bacteriophage in a recombination deficient strain of Escherichia coli. J. Virol. 1, 283293.Google Scholar
Chuno, Y. S. & Greenberg, J. (1968). Genes affecting sensitivity to ultraviolet light in the malB region of the chromosome of Escherichia coli. Genetics 59, 1122.CrossRefGoogle Scholar
Demerec, M., Adelberg, E. A., Clark, A. J. & Hartman, P. E. (1966). A proposal for a uniform nomenclature in bacterial genetics. Genetics 54, 6176.CrossRefGoogle ScholarPubMed
Donch, J. & Greenbehg, J. (1968 a). Loci of radiation sensitivity in Bs strains of Escherichia coli. Genet. Res., Camb. 11, 183191.Google Scholar
Donch, J. & Greenbehg, J. (1968 b). The ultraviolet sensitivity gene of Escherichia coli B. J. Bact. 95, 15551559.Google Scholar
Donch, J., Green, M. H. L. & Greenberg, J. (1968). Interaction of the exr and lon genes in Escherichia coli. J. Bact. 96, 17041710.Google Scholar
Green, M. H. L., Greenberg, J. & Donch, J. (1970). Effect of recA gene on cell division and capsular polysaccharide production in a lon strain of Escherichia coli. Genet. Bee. Camb. 14, 159162.Google Scholar
Greenberg, J. (1967). Loci for radiation sensitivity in Escherichia coli strain Bs-1. Genetics 55, 193201.Google Scholar
Harm, W. (1966). The role of host-cell repair in liquid-holding recovery in u.v.-irradiated Escherichia coli. Photochem. Photobiol. 5, 747760.CrossRefGoogle ScholarPubMed
Hertman, I. & Luria, S. E. (1967). Transduction studies on the role of a rec + gene in the ultraviolet induction of prophage lambda. J. molec. Biol. 23, 117133.CrossRefGoogle ScholarPubMed
Hill, R. & Simson, E. (1961). A study of radiosensitive and radio-resistant mutants of Escherichia coli B. J. gen. Microbiol. 24, 114.CrossRefGoogle Scholar
Howard-Flanders, P. & Boyce, R. P. (1966). DNA repair and genetic recombination; studies on mutants defective in these processes. Radiation Res. Suppl. no. 6, pp.156184.Google Scholar
Howard-Flanders, P. & Theriot, L. (1966). Mutants of Escherichia coli K-12 defective in DNA repair and in genetic recombination. Genetics 53, 11371150.CrossRefGoogle ScholarPubMed
Howard-Flanders, P. E., Simson, E. & Theriot, L. (1964). A locus that controls filament formation and sensitivity to radiation in Escherichia coli K-12. Genetics 49, 237246.CrossRefGoogle ScholarPubMed
Markovich, H. (1956). Étude de l'action des rayons ultraviolet sur le systém lysogéne Escherichia coli K12(λ), K12s, λ. Ann. Inst. Pasteur 91, 511522.Google Scholar
Mattern, I. E., Van Winden, M. P. & Rörsch, A. (1965). The range of action of genes controlling radiation sensitivity in Escherichia coli. Mutation Res. 2, 111131.CrossRefGoogle ScholarPubMed
Mattern, I. E., Zwenk, H. & Borsch, A. (1966). The genetic consitution of the radiation sensitive mutant E. coli Bs-1. Mutation Res. 3, 374380.CrossRefGoogle Scholar
Rörsch, A., Van De Putte, P., Mattern, I. E., Zwenk, H. & Van Slots, C. A. (1966). In Genetical Aspects of Radiosensitivity: Mechanisms of Repair (Proc. Panel Vienna, 04 1966) IAEA 105129.Google Scholar
Rupp, W. D. & Howard-Flanders, P. (1968). Discontinuities in the DNA synthesized in an oxcision-defective strain of Escherichia coli following ultraviolet irradiation. J. molec. Biol. 31, 291304.CrossRefGoogle Scholar
Sussman, R. & Jacob, F. (1962). Sur un système de répression thermosensible chez le bactériophage λ d'escherichia coli. C. r. hebd. Séanc. Acad. Sci., Paris 254, 15171519.Google Scholar
Takebe, H., Ichikawa, H., Iwo, K. & Kondo, S. (1967). Phage induction by ultraviolet radiation in strains of Escherichia coli possessing and lacking dark repair capacity. Virology 33, 638649.CrossRefGoogle ScholarPubMed
Van De Putte, P., Van Sluis, C. A., Van Dillewijn, J. & Rörsch, A. (1965). The location of genes controlling radiation sensitivity in Escherichia coli. Mutation Res. 2, 97110.CrossRefGoogle ScholarPubMed
Willets, N. S. (1968). Enzymatic DNA degradation in E. coli: its relationship to synthetic processes at the chromosomal level. Cold Spring Harbor Symp. quant. Biol. 32, 269.Google Scholar
Witkin, E. M. (1969). The role of DNA repair and recombination in mutagenesis. Proc. Xllth Int. Congr. Genetics, Tokyo. Vol. 3: 225245.Google Scholar
Witkin, E. (1969). The mutability toward ultraviolet light of recombination-deficient strains of Escherichia coli. Mutation Res. 8, 914.Google Scholar