Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T03:22:29.312Z Has data issue: false hasContentIssue false

Relationship between chromosome content and nuclear diameter in early spermatids of Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

Cayetano González*
Affiliation:
Centro de Biología Molecular (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
José Casal
Affiliation:
Centro de Biología Molecular (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
Pedro Ripoll
Affiliation:
Centro de Biología Molecular (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
*
Corresponding author: Cayetano González.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have studied, using light microscopy, the relationship between chromosome content and nuclear diameter in early spermatids of males carrying different combinations of wild-type and compound chromosomes in Drosophila melanogaster. By using these genotypes we have been able to observe spermatid nuclei bearing various numbers of chromosomes ranging from only one sex chromosome and no major autosomes to almost twice the normal chromosome complement. We have found that variations in the chromosome content are accompanied by increasing the variance in early spermatid nuclear diameter; the more gametic classes produced, the higher the variance of nuclear diameters. These results indicate that measuring nuclear diameters in early spermatids represents a useful way to estimate the levels of meiotic non-disjunction and thereby to improve the characterization of lethal or male sterile mutants in which analysis of meiotic chrosome non-disjunction cannot be achieved by conventional genetic methods.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

References

Beauty, R. A. & Burgoyne, P. S. (1971). Size classes of the head and flagellum of Drosophila spermatozoa. Cytogenetics 10, 177189.CrossRefGoogle Scholar
Beatty, R. A. & Sidhu, N. S. (1967). Spermatozoon nucleus length in three strains of Drosophila melanogaster. Heredity 11, 6582.CrossRefGoogle Scholar
Beatty, R. A. & Sidhu, N. S. (1970). Polymegaly of spermatozoon length and its genetic control in Drosophila species. Proceedings of the Royal Society 71, 1428.Google Scholar
Church, K. & Lin, H. P. P. (1982). Meiosis in Drosophila melanogaster. II. The prometaphase-I kinetochore microtubule bundle and kinetochore orientation in males. Journal of Cell Biology 93, 365373.CrossRefGoogle ScholarPubMed
Cooper, K. W. (1965). Normal spermatogenesis in Drosophila. In Biology of Drosophila (ed. Demerec, M.), pp. 161. New York, London: Hafner Publishing Co.Google Scholar
Fuller, M. T. (1986). Genetic analysis of spermatogenesis in Drosophila: the role of the testes-specific B-tubulin and interacting genes in cellular morphogenesis. In Gametogensis and the Early Embryo (ed. Gall, J. G.), pp. 1941. New York: Alan R. Liss.Google Scholar
Gonzalex, C., Casal, J. & Ripoll, P. (1988). Functional monopolar spindles caused by mutation in mgr, a cell division gene of Drosophila melanogaster. Journal of Cell Science 89, 3947.CrossRefGoogle Scholar
Grell, R. F. (1976). Distributive pairing. In The Genetics and Biology of Drosophila (ed. Ashburner, M. and Novitski, E.), pp. 435486. London: Academic Press.Google Scholar
Hardy, R. W. (1975). The influence of chromsome content on the size and shape of sperm heads in Drosophila melanogaster and the demonstration of chromosome loss during spermiogenesis. Genetics 79, 231264.CrossRefGoogle Scholar
Hardy, R. W., Tokuyasu, K. T. & Lindsley, D. L. (1981). Analysis of spermatogenesis in Drosophila melanogaster bearing deletions for Y-chromosome fertility genes. Chromosoma 83, 593617.CrossRefGoogle ScholarPubMed
Hardy, R. W., Lindley, D. L., Livak, K. J., Lewis, B., Silversten, A. L., Joslyn, G. L., Edwards, J. & Bonaccorsi, S. (1984). Cytogenetic analysis of a segment of the Y chromosome of Drosophila melanogaster. Genetics 107, 591610.CrossRefGoogle Scholar
Herskovitz, I. H. & Muller, H. J. (1954). Evidence against a straight end-to-end alignment of chromosomes in Drosophila melanogaster. Genetics 39, 836850.CrossRefGoogle Scholar
Holm, D. G., Deland, M. & Chovnick, A. (1967). Meiotic segregation of C(3L) and C(3R) chromosomes in Drosophila melanogaster. Genetics 39, 157168.Google Scholar
Holm, D. G. & Chovnick, A. (1975). Compound autosomes in Drosophila melanogaster: the meiotic behaviour of compound thirds. Genetics 81, 293331.CrossRefGoogle ScholarPubMed
Holm, D. G. (1976). Compound autosomes. In The Genetics and Biology of Drosophila, vol. 1 B (ed. Ashburner, M. and Novitski, E.), pp. 529561. London: Academic Press.Google Scholar
Kaufman, B. P. (1934). Somatic mitoses of Drosophila melanogaster. Journal of Morphology 56, 125155.CrossRefGoogle Scholar
Lefevre, G. L. Jr (1976). A photographic representation and interpretation of the polytene chromsomes of Drosophila melanogaster salivary glands. In The Genetics and Biology of Drosophila, vol. 1 A (ed. Ashburner, M. and Novitski, E.), pp. 3266. London: Academic Press.Google Scholar
Lifschytz, E. & Hareven, D. (1977). Gene expression and the control of spermatid morphogenesis in Drosophila melanogaster. Developmental Biology 58, 276294.CrossRefGoogle ScholarPubMed
Lindsley, D. L. & Grell, E. H. (1968). Genetic Variations of Drosophila melanogaster. Washington: Carnegia Institution.Google Scholar
Lindsley, D. L. & Tokuyasu, K. T. (1980). Spermatogenesis. In The Genetics and Biology of Drosophila (ed. Ashburner, M. and Wright, T. R. F.). New York: Academic Press.Google Scholar
Novitsky, E. (1976). The construction of an entire compound two chromosome. In The Genetics and Biology of Drosophila (ed. Ashburner, M. and Novitski, E.), pp. 562568. New York: Academic Press.Google Scholar
Novitski, E., Grace, D. & Stromen, C. (1981). The entire compound autosomes of Drosophila melanogaster. Genetics 98, 257273.CrossRefGoogle ScholarPubMed
Peck, M. (1980). An analysis of transmission of the compound (2)-Entire in anaphase II spermatocytes from Drosophila melanogaster. MS Thesis. Oregon State University.Google Scholar
Regan, C. L. & Fuller, M. T. (1987). Interacting genes that affect microtubule function: the nc2 allele of the haywire locus fails to complement mutations in the testis-specific B-tubulin gene of Drosophila. Genes and Development 2, 8292.CrossRefGoogle Scholar
Ripoll, P., Pimpinelli, S., Valdivia, M. M. & Avila, J. (1985). A cell division mutant of Drosophila with a functionally abnormal spindle. Cell 41, 907912.CrossRefGoogle ScholarPubMed
Sandler, L. & Braver, G. (1954). The meiotic loss of unpaired chromosomes in Drosophila melanogaster. Genetics 39, 365377.CrossRefGoogle ScholarPubMed
Sidhu, N. S. (1964). A quantitative study of spermatozoon nucleus length in Drosophila melanogaster. Proceedings of the Royal Society 68, 327335.Google Scholar
Sunkel, C. & Glover, D. M. (1988). Polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. Journal of Cell Science 89, 2538.CrossRefGoogle Scholar
Tates, A. D. (1971). Cytodifferentiation during spermatogenesis. In Drosophila melanogaster: An Electron Microscope Study. The Hague: Drukkerij J. H. Pasmans.Google Scholar
Tokuyasu, K. T. (1974 a). Dynamics of spermiogenesis in Drosophila melanogaster. III. Relation between axoneme and mitochondrial derivatives. Experimental Cell Research 84, 239250.CrossRefGoogle Scholar
Tokuyasu, K. T. (1974 b). Dynamics of spermiogenesis in Drosophila melanogaster. IV. Nuclear transformation. Journal of Ultrastructure Research 48, 284303.CrossRefGoogle ScholarPubMed
Tokuyasu, K. T. (1975). Dynamics of spermiogenesis in Drosophila melanogaster. VI. Significance of ‘onion’ nebenkern formation. Journal of Ultrastructure Research 53, 93112.CrossRefGoogle ScholarPubMed